
1
PHẦN I. ĐẶT VẤN ĐỀ
1.1. Lí do chọn đề tài
Đối với chương trình phổ thông, hình học là một trong ba nội dung chính mà
Bộ giáo dục hướng đến để xây dựng chương trình mới, trong đó hình học không
gian với chủ đề thể tích khối đa diện là chủ đề mang nhiều ý nghĩa thiết thực. Chủ
đề này theo chương trình GDPT 2006 được trình bày ở SGK hình học lớp 12, sau
khi học sinh được học khái niệm về khối đa diện; còn theo chương trình GDPT
2018 được trình bày ở SGK lớp 11 kết hợp trong chương quan hệ vuông góc với
mục tiêu tinh gọn và đơn giản hóa so với chương trình cũ. Qua chủ đề này, học
sinh vận dụng được các công thức để tính thể tích các khối đa diện, ứng dụng để
tính khoảng cách, tỉ số đoạn thẳng… và liên hệ để giải quyết một số bài toán trong
thực tiễn. Trong quá trình giảng dạy, bồi dưỡng học sinh giỏi, chúng tôi thấy rằng,
để tính được thể tích khối đa diện bất kỳ thông thường quy về tính thể tích của hai
khối là khối chóp và khối lăng trụ, trong đó công thức liên quan đến tính diện tích
đáy và chiều cao là hai yếu tố chính. Việc tính diện tích đáy thì dựa vào tính diện
tích của tam giác, tứ giác hoặc đa giác đặc biệt, nhưng đối với chiều cao thì thường
thực hiện qua hai bước là xác định được chân đường vuông góc hạ từ đỉnh đến mặt
đáy và tính độ dài tương ứng. Đề tài này hướng đến việc tính thể tích của khối đa
diện khi chưa xác định được chiều cao từ giả thiết của bài toán bằng cách đi thiết
lập chiều cao, xác định chân đường vuông góc dựa trên tính chất đặc biệt của giả
thiết, tính độ dài tương ứng hoặc xác định khoảng cách từ điểm một mặt phẳng, sử
dụng tính chất bắc cầu thông qua một khối đa diện khác đã xác định được chiều
cao.
Với chương trình GDPT 2018, những thay đổi phương pháp dạy và học, thay
đổi hình thức kiểm tra đánh giá học sinh, đặc biệt hình thức thi tốt nhiệp từ năm
2025 đặt ra những thách thức mới đòi hỏi sự thay đổi từ giáo viên và học sinh để
nâng cao chất lượng dạy và học. Đề tài giúp học sinh phát triển năng lực giải quyết
vấn đề, tư duy và lập luận logic, từ đó hướng đến giải quyết được các bài toán liên
quan đến các kì thi như học sinh giỏi cấp tỉnh, thi tốt nghiệp hay thi đánh giá năng
lực của một số trường đại học.
Với những lí do trên chúng tôi chọn đề tài SKKN: “Khai thác cách xác định
chiều cao trong các bài toán tính thể tích khối đa diện”.
1.2. Mục đích nghiên cứu
+) Nghiên cứu cơ sở lý luận về tư duy sáng tạo.
+) Nghiên cứu các tính chất hình học không gian tổng hợp để giải quyết các bài
toán xác định chiều cao và tính thể tích khối đa diện.
+) Tạo ra hệ thống bài tập theo chủ đề nhằm rèn luyện năng lực cho người học đáp
ứng với chương trình dạy, học hiện hành.