Ậ Ợ
Ủ Ề
CH Đ 1: T P H P
Ứ Ơ Ả Ế A/ KI N TH C C B N.
ơ ả ệ ộ ườ ộ ố ọ ợ là m t khái ni m c b n th ể ng dùng trong toán h c và trong cu c s ng, ta hi u ậ 1. T p h p
ợ ụ ậ t p h p thông qua các ví d .
ậ ợ ượ ặ ữ ậ ậ ằ ợ ợ b ng ch cái in hoa: VD: T p h p A, t p h p B,… 2. T p h p đ c đ t tên
ữ ệ ằ ườ ầ ử ầ ử ầ ử ủ ậ ợ kí hi u b ng ch cái th ng: VD: ph n t a, ph n t b,…. 3. Ph n t c a t p h p
ế ậ ợ 4. Vi t t p h p:
ệ ầ ử ủ ậ ợ Li t kê ph n t ầ ử c a t p h p: A = {ph n t }
ấ ặ ấ ặ ủ ư ư ợ ỉ ậ Ch ra tính ch t đ c tr ng c a các t p h p: A = {x | tính ch t đ c tr ng}
ầ ử ủ ậ ố ộ ậ ầ ử ề ợ ộ ố ể ợ M t t p h p có th có m t, có nhi u ph n t ầ , có vô s ph n 5. S ph n t c a t p h p:
ầ ử ể ử t , cũng có th không có ph n t nào.
ầ ử ộ ậ ợ ộ 6. Ph n t thu c, không thu c t p h p:
ầ ử ế ộ ậ ệ N u ph n t ợ x thu c t p h p A, kí hi u x ∈ A.
(cid:0) A.
ầ ử ế ộ ậ ệ ợ N u ph n t a không thu c t p h p A, kí hi u a
ầ ử ậ ợ ậ ỗ ệ Là t p h p không có ph n t nào, t p r ng kí hi u là: Ø. ậ ợ ỗ 7. T p h p r ng:
ợ ậ ầ ử ủ ậ ộ ậ ế ề ậ ợ ợ ợ ọ ọ N u m i ph n t c a t p h p A đ u thu c t p h p B thì t p h p A g i là 8. T p h p con:
(cid:0) B hay B (cid:0) A.
ủ ậ ệ ợ ợ ậ t p h p con c a t p h p B, kí hi u là A
(cid:0) B và B (cid:0) A, ta nói hai t p h p b ng nhau, kí hi u A = B. ậ ợ ằ
ệ N u Aế ậ ợ ằ 9. Hai t p h p b ng nhau:
n.
ế ậ ợ ầ ử ố ậ ợ ủ 10. N u t p h p A có n ph n t thì s t p h p con c a A là 2
Ạ B/ CÁC D NG TOÁN.
ạ ế ậ ợ ế ậ ợ ử ụ ệ D ng 1: Vi t t p h p, vi t t p h p con, s d ng kí hi u
ớ ậ ầ ử ế ậ ợ ệ ầ ử ợ * V i t p h p ít ph n t thì vi t t p h p theo cách li t kê ph n t .
ớ ậ ầ ử ề ấ ợ ầ ử ố ế ậ ợ ỉ * V i t p h p có r t nhi u ph n t (vô s ph n t ) thì vi ấ t t p h p theo cách ch ra tính ch t
ầ ử ư ợ ủ ặ đ c tr ng c a các ph n t ậ trong t p h p.
ữ ụ ậ ợ ừ ố ồ ệ “Thành ph H Chí Minh”. (Không phân bi t ch ữ Bài 1: Cho t p h p A là các ch cái trong c m t
ữ ườ ụ ừ in hoa và ch in th ng trong c m t đã cho).
ệ ầ ử ủ ậ ợ a) Hãy li t kê các ph n t c a t p h p A.
ề ệ ợ b) Đi n kí hi u thích h p vào ô vuông
b A c A h A
ữ ậ ợ Bài 2: Cho t p h p các ch cái X = {A, C, O}
ữ ạ ụ ừ ợ a/ Tìm c m ch t o thành t ữ ủ ậ các ch c a t p h p X.
ế ậ ấ ặ ầ ử ủ ư ằ ợ ỉ b/ Vi t t p h p X b ng cách ch ra các tính ch t đ c tr ng cho các ph n t c a X.
ướ ẫ H ng d n
ạ ụ ẳ ừ ặ a/ Ch ng h n c m t “CA CAO” ho c “CÓ CÁ”
ữ ụ ữ b/ X = {x: xch cái trong c m ch “CA CAO”}
ậ ợ Bài 3: Cho các t p h p: A = {1; 2; 3; 4; 5; 6;8;10} ; B = {1; 3; 5; 7; 9;11}
ế ậ ầ ử ợ ộ ộ a/ Vi t t p h p C các ph n t thu c A và không thu c B.
ế ậ ầ ử ợ ộ ộ b/ Vi t t p h p D các ph n t thu c B và không thu c A.
ế ậ ầ ử ừ ừ ợ ộ ộ c/ Vi t t p h p E các ph n t v a thu c A v a thu c B.
ế ậ ầ ử ặ ặ ợ ộ ộ d/ Vi t t p h p F các ph n t ho c thu c A ho c thu c B.
ậ ợ Bài 4: Cho t p h p A = {1; 2;3;x; a; b}
ủ ậ ỉ ợ a/ Hãy ch rõ các t p h p con c a A có 1 ph n t ầ ử .
ủ ậ ỉ ợ b/ Hãy ch rõ các t p h p con c a A có 2 ph n t ầ ử .
ủ ậ ậ ợ ợ ả c/ T p h p B = {a, b, c} có ph i là t p h p con c a A không?
ỏ ậ ậ ợ ợ ấ ả ậ ợ t c bao nhiêu t p h p con? Bài 5: Cho t p h p B = {a, b, c}. H i t p h p B có t
,
,
(cid:0) (cid:0) (cid:0) ề ệ ấ ợ thích h p vào d u (….) Bài 6: Cho A = {1; 3; a; b} ; B = {3; b} . Đi n các kí hi u
=
=
<
; B ...... A 1 ......A ;
x N
< < x
B
x N x
A
/ 9
(cid:0) (cid:0) 3 ... A { 3....... B {
} 99
* /
; } 100 ậ ợ ; ấ (cid:0) ề . Hãy đi n d u hay (cid:0) vào các Bài 7: Cho các t p h p
ướ ô d i đây
; N .... N* A ......... B
ế ậ ằ ợ ệ ầ ử t t p h p sau b ng cách li t kê các ph n t : Bài 8: Vi
a) A = {x ∈ N* | 20 ≤ x < 30}
b) B = {x ∈ N* | < 15}
ế ằ ậ ợ ệ ầ ử ủ t các t p h p sau đây b ng cách li t kê các ph n t c a chúng : Bài 9. Vi
ố ự ậ ợ ơ ớ T p h p A các s t nhiên không l n h n 5.
ố ự ậ ợ ỏ ơ ữ ố T p h p B các s t nhiên có hai ch s không nh h n 90.
ố ẵ ớ ặ ằ ỏ ơ ậ ơ ợ T p h p C các s ch n l n h n 10 và nh h n ho c b ng 20.
ầ ử ủ ư ậ ỉ ợ c a các t p h p sau đây : ấ ặ Bài 10. Ch ra tính ch t đ c tr ng cho các ph n t
A = 10; 2; 4; 6; 8} ; B = (1; 3; 5; 7; 9; 11} ;
C = {0; 5; 10; 15; 20; 25} ; D = (1; 4; 7;10; 13;16; 19}.
ế ậ ố ự ợ ỏ ơ ữ ố ứ ớ ơ ố t t p h p các s t nhiên l n h n 14, nh h n 45 và có ch a ch s 3. Các s 13 ; 25 ; Bài 11: Vi
ộ ậ ợ ấ 53 có thu c t p h p y không ?
Bài 12:
ố ộ ế ậ ợ ộ ồ a) M t năm g m b n quý. Vi ủ t t p h p A các tháng c a quý m t trong năm.
ế ậ ợ ươ ơ ị b) Vi t t p h p B các tháng (d ng l ch) có ít h n 30 ngày.
ố ầ ử ủ ộ ậ ợ ạ ị D ng 2: Xác đ nh s ph n t c a m t t p h p.
ầ ử ậ ợ ớ ợ ồ ế ễ ậ ầ ử ể ố * V i các t p h p ít ph n t thì bi u di n t p h p r i đ m s ph n t .
ớ ậ ầ ử ợ ề ậ ả ớ * V i t p h p mà có ph n t tuân theo quy lu t tăng đ u v i kho ng cách ầ ử ố d thì s ph n t
ố ố ố ầ ợ ủ ậ c a t p h p này là: (S đ u – S cu i):d + 1
ố ự ậ ợ ọ ữ ố ỏ ậ ợ ầ ử nhiên có 3 ch s . H i t p h p A có bao nhiêu ph n t ? Bài 1: G i A là t p h p các s t
ướ ẫ H ng d n:
ậ ợ T p h p A có (999 – 100) + 1 = 900 ph n t ầ ử .
ầ ử ủ ố ợ ậ c a các t p h p sau: Bài 2: Hãy tính s ph n t
ố ự ậ ợ ẻ a/ T p h p A các s t nhiên l ữ ố có 3 ch s .
ậ ố ợ b/ T p h p B các s 2, 5, 8, 11, …, 296, 299, 302
ậ ố ợ c/ T p h p C các s 7, 11, 15, 19, …, 275 , 279
ướ ẫ H ng d n
ậ ợ a/ T p h p A có (999 – 101):2 +1 = 450 ph n t ầ ử .
ậ ợ b/ T p h p B có (302 – 2 ): 3 + 1 = 101 ph n t ầ ử .
ậ ợ c/ T p h p C có (279 – 7 ):4 + 1 = 69 ph n t ầ ử .
Ổ T NG QUÁT:
ố ẵ ừ ố ẵ ế ố ẵ ầ ử ậ ợ + T p h p các s ch n t s ch n a đ n s ch n b có (b – a) : 2 + 1 ph n t .
ố ẻ ừ ố ẻ ậ ế ố ẻ ầ ử ợ + T p h p các s l s l t m đ n s l n có (n – m) : 2 + 1 ph n t .
ố ừ ố ế ố ữ ề ả ậ ố ố ợ + T p h p các s t ế ủ s c đ n s d là dãy s các đ u, kho ng cách gi a hai s liên ti p c a
dãy là 3 có (d – c ): 3 + 1 ph n t ầ ử .
ố ự ậ ợ ọ ữ ố ỏ ậ ợ ầ ử nhiên có 3 ch s . H i t p h p A có bao nhiêu ph n t ? Bài 3: G i A là t p h p các s t
ầ ử ủ ố ợ ậ c a các t p h p sau: Bài 4: Hãy tính s ph n t
ố ự ậ ợ ẻ a/ T p h p A các s t nhiên l ữ ố có 3 ch s .
ậ ố ợ b/ T p h p B các s 2, 5, 8, 11, …, 296, 299, 302
ậ ố ợ c/ T p h p C các s 7, 11, 15, 19, …, 275 , 279
ế ỗ ậ ầ ử ợ t m t p h p sau có bao nhiêu ph n t Bài 5: Cho bi
ố ự ậ ợ a) T p h p A các s t nhiên x sao cho x – 30 = 60
ố ự ậ ợ b) T p h p B các s t nhiên y sao cho y . 0 = 0
ố ự ậ ợ c) T p h p C các s t
ố ự ậ ợ d) T p h p D các s t nhiên a sao cho 2.a < 20 2 (cid:0) nhiên d sao cho (d – 5) 0
ố ự ậ ợ e) T p h p G các s t nhiên z sao cho 2.z + 7 > 100
ố ự ỏ ậ ữ ố ố ể ế ấ ả t t t c các s t nhiên có b n ch s khác nhau. H i t p này ữ ố Bài 6: Dùng 4 ch s 1, 2, 3, 4 đ vi
có bao nhiêu ph n t ầ ử .
ậ ợ Bài 7: Cho hai t p h p M = {0,2,4,…..,96,98,100;102;104;106};
Q = { x (cid:0) ố ẵ N* | x là s ch n ,x<106};
ợ
ể ự ố ệ ữ ầ ử ỗ ậ a) M i t p h p có bao nhiêu ph n t ? b) Dùng kí hi u ệ (cid:0) đ th c hiên m i quan h gi a M và Q.
(cid:0) ậ ợ N | 75 ≤ a ≤ 85}; S={b (cid:0) N | 75 ≤b ≤ 91}; Bài 8. Cho hai t p h p R={a
ế ậ ợ a) Vi t các t p h p trên;
ợ ầ ử ;
ể ự ệ ữ ậ ố ợ ỗ ậ b) M i t p h p có bao nhiêu ph n t c) Dùng kí hi u ệ (cid:0) đ th c hiên m i quan h gi a hai t p h p đó.
ế ậ ợ ế ỗ ậ ầ ử ợ t các t p h p sau và cho bi t m i t p h p có bao nhiêu ph n t : Bài 9. Vi
ố ự ậ ợ a) T p h p A các s t nhiên x mà 17 – x = 5 .
ố ự ậ ợ b) T p h p B các s t nhiên y mà 15 – y = 18.
ố ự ậ ợ c) T p h p C các s t nhiên z mà 13 : z > 6.
(cid:0) ố ự ậ ợ d) T p h p D các s t nhiên x , x N* mà 2.x + 1 < 100.
ậ ợ ạ D ng 3: T p h p con.
ủ ậ ầ ử ủ ứ ầ ậ ố ỗ ộ ỉ * Mu n ch ng minh t p B là con c a t p A, ta c n ch ra m i ph n t ề c a B đ u thu c A.
ể ế ậ ủ ầ ế ậ ướ ạ ệ ầ ử ồ * Đ vi t t p con c a A, ta c n vi t t p A d i d ng li t kê ph n t ỗ ậ . Khi đó m i t p B g m
ộ ố ầ ử ủ ủ ẽ m t s ph n t ậ c a A s là t p con c a A.
n
* L u ý:ư
ế ậ ợ ầ ử ố ậ ợ ủ N u t p h p A có n ph n t thì s t p h p con c a A là 2
ầ ử ủ ậ ủ ố ượ ầ ử ủ S ph n t c a t p con c a A không v ố t quá s ph n t c a A.
ậ ỗ ọ ậ ủ ậ ợ T p r ng là t p con c a m i t p h p.
ủ ậ ậ ậ ậ ợ ợ ợ ợ ạ ệ i. Dùng kí hi u Bài 1: Trong ba t p h p con sau đây, t p h p nào là t p h p con c a t p h p còn l
(cid:0) ể ể ệ ớ ậ ợ ệ ỗ ậ đ th hi n quan h m i t p h p trên v i t p N.
ố ự ậ ỏ ơ ợ A là t p h p các s t nhiên nh h n 20
ố ẻ ậ ợ B là t p h p các s l
ố ự ậ ợ C là t p h p các s t nhiên khác 20.
ậ ợ ủ ậ ậ ạ ậ ợ Bài 2: Trong các t p h p sau, T p h p nào là t p con c a t p còn l i?
a) A = {m ; n} và B = {m ; n ; p ; q}
ố ự ậ ợ ữ ố ố ố ự ậ ợ b) C là t p h p các s t nhiên có ba ch s gi ng nhau và D là t p h p các s t nhiên chia
ế h t cho 3.
c) E = {a ∈N| 5 < a < 10} và F = {6 ; 7 ;8 ; 9}
ậ Bài 3: Cho t p A = {1 ; 2; 3}
ủ ậ ậ ợ a) Tìm các t p h p con c a t p A.
ế ậ ầ ử ợ ủ ậ b) Vi ồ t t p h p B g m các ph n t là các t p con c a A
ủ ẳ ậ ị ậ c) Kh ng đ nh t p A là t p con c a B đúng không?
ậ ậ ồ ưở i} Bài 4: Cho t p A = {nho, m n, h ng, cam, b
ế ấ ả ỗ ậ ủ ậ ợ ợ Hãy vi t c các t p h p con c a A sao cho m i t p h p đó có: t t
ộ a) M t ph n t ầ ử .
b) Hai ph n t ầ ử .
c) Ba ph n t ầ ử .
ộ ậ ợ ọ ạ ướ ằ ẽ D ng 3. Minh h a m t t p h p cho tr c b ng hình v
ử ụ ộ ườ ể ự ắ ầ ử ủ ậ ồ * S d ng bi u đ Ven. Đó là m t đ ng cong khép kín, không t ỗ c t, m i ph n t c a t p
ượ ể ở ể ễ ộ ườ ợ h p đ ở c bi u di n b i m t đi m bên trong đ ng cong đó.
ố ự ậ ợ ọ ọ ậ ẵ ợ ằ nhiên ch n m sao cho 4 < m < 11. Hãy minh h a t p h p A b ng VÍ DỤ. G i A là t p h p các s t
hình v . ẽ