
DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ
[CT1]. Van-Ngoc Dinh, Ngoc-My Bui, and Quang-Kien Trinh,
“Improving the robustness of binarized neural network using the
EFAT method”. JMST, no. CSCE5, pp. 14–23, Dec. 2021.
https://doi.org/10.54939/1859-1043.j.mst.CSCE5.2021.14-23
[CT2]. Van-Ngoc Dinh, Ngoc-My Bui, Van-Tinh Nguyen, Quang-Manh
Duong and Quang-Kien Trinh, "FBW-SNN: A Fully Binarized
Weights-Spiking Neural Networks for Edge-AI Applications".
2022 International Conference on IC Design and Technology
(ICICDT), 2022, pp. 105-108.
https://doi.org/10.1109/ICICDT56182.2022.9933108
[CT3]. Van-Ngoc Dinh, Ngoc-My Bui, Van-Tinh Nguyen, Khoa-Sang.
Nguyen, Quang-Manh Duong and Quang-Kien Trinh, "A Study on
Adversarial Attacks and Defense Method on Binarized Neural
Network". 2022 International Conference on Advanced
Technologies for Communications (ATC), 2022, pp. 304-309.
https://doi.org/10.1109/ATC55345.2022.9943040
[CT4]. Van-Ngoc Dinh, Ngoc-My Bui, Van-Tinh Nguyen, Deepu John,
Long-Yang Lin, and Quang-Kien Trinh, “NUTS-BSNN: A Non-
uniform Time-step Binarized Spiking Neural Network with
Energy-Efficient In-memory Computing Macro”.
Neurocomputing, 126838, 2023.
https://doi.org/10.1016/j.neucom.2023.126838
Tạp chí quốc tế danh mục SCI/SCIE Q1, IF: 6,192.
[CT5]. Ngoc-My Bui, Van-Ngoc Dinh, Van-Hau Pham, Quang-Kien
Trinh, “Uncovering the Resilience of Binarized Spiking Neural
Networks Under Adversarial Attacks”. 2023 International
Conference on Control, Automation and Information Sciences
(ICCAIS), 2023, pp. 674-679.
https://doi.org/10.1109/ICCAIS59597.2023.10382270