intTypePromotion=1

Bài giảng Tài chính tiền tệ - Chương 2: Lãi suất

Chia sẻ: Dfxvcfv Dfxvcfv | Ngày: | Loại File: PPT | Số trang:43

0
730
lượt xem
80
download

Bài giảng Tài chính tiền tệ - Chương 2: Lãi suất

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Tài chính tiền tệ Chương 1 Tổng quan về tiền tệ nêu khái niệm lãi suất, các phương pháp đo lường lãi suất, phân loại lãi suất và các nhân tố ảnh hưởng tới lãi suất, cấu trúc rủi ro và cấu trúc kỳ hạn của lãi suất.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Tài chính tiền tệ - Chương 2: Lãi suất

  1. Kết cấu chương I. Khái niệm lãi suất II. Các phương pháp đo lường lãi suất III. Phân loại lãi suất IV. Các nhân tố ảnh hưởng tới lãi suất V. Cấu trúc rủi ro và cấu trúc kỳ hạn của lãi suất VI. Chính sách lãi suất ở Việt Nam Tài chính tiền tệ- Chương 5 15/04/14 2
  2. I. Khái niệm lãi suất 1. Định nghĩa  Lãi suất là tỷ lệ phần trăm tính trên số tiền vay mà người đi vay phải trả cho người cho vay để có quyền sử dụng vốn vay 2. Công thức  Lãi suất = Tiền lãi / Tiền gốc - Tiền lãi (interest payment) là số tiền mà người đi vay phải trả cho người cho vay với tư cách là chi phí sử dụng vốn vay - Tiền gốc (principal) là số tiền người đi vay được sử dụng theo hợp đồng tín dụng
  3. II. Các phương pháp đo lường lãi suất 1. Giá trị thời gian của tiền tệ 2. Lãi đơn 3. Lãi ghép 4. Tần số ghép lãi
  4. 1. Giá trị thời gian của tiền tệ VD: có những lựa chọn sau cho khoản tiền 100 triệu nhàn rỗi: -Gửi tiền tiết kiệm với lãi suất 8%/năm -Cho đối tác vay với thời hạn 5 năm, lãi mỗi năm là 6 triệu, tiền gốc được hoàn trả sau 5 năm -Đầu tư dự án kinh doanh. Dự tính năm thứ 3 thu được 35 triệu, năm 4 được 45 triệu và năm 5 được 50 triệu
  5. Giá trị thời gian của tiền tệ  - Với cùng một lượng tiền nhận được, giá trị của nó sẽ không giống nhau nếu ở vào những thời điểm khác nhau  - Số tiền có trong tay ngày hôm nay luôn có giá trị lớn hơn một số tiền tương tự nhưng dự tính nhận được trong tương lai
  6. Giá trị thời gian của tiền tệ • Giá trị tương lai (FV) là giá trị mà một khoản đầu tư sẽ đạt đến sau một thời gian nhất định với một mức lãi suất nhất định • Giá trị tương lai tại thời điểm tn là giá trị của một khoản đầu tư được tính thực sự tại thời điểm đó • Giá trị hiện tại (PV) là giá trị của một dòng tiền vào hiện tại
  7. 2. Phương pháp tính lãi đơn - Khoản vay đơn (simple interest): tiền lãi của mỗi kỳ luôn được tính trên số vốn ban đầu PV là số tiền gốc ban đầu, i là lãi suất I là tiền lãi mỗi kỳ: I = I1 = I2 =…=In = PV*i  Số tiền thu được sau n kỳ: FVn = PV+n*I = PV + n*PV*i -> FVn = PV*(1+n*i)  VD: Gửi 100$ vào tài khoản kỳ hạn 15 tháng, lãi suất 9%/năm. Tính số tiền nhận khi đến hạn?
  8. Phương pháp tính lãi ghép b. Phương pháp tính lãi ghép -Tiền lãi của kỳ trước được cộng vào tiền gốc để làm căn cứ tính tiền lãi của kỳ sau -PV: tiền gốc, i: lãi suất, FV: số tiền nhận được sau mỗi kỳ FV1 = PV + PV*i = PV (1+i) FV2 = PV(1+i) + PV(1+i)*i = PV(1+i)(1+i) = PV(1+i)2 -> FVn = PV(1+i)n
  9. Ví dụ  Giả sử vay 100 triệu với lãi suất là 10%/năm. Số tiền phải trả sau 2 năm là bao nhiêu? * Nếu áp dụng lãi đơn: FV2 = PV(1+2*i) = 100 (1+2*10%) = 120tr * Nếu áp dụng lãi ghép: FV1 = 100(1+10%) = 110tr -> khoản vay đơn FV2 = 110(1+10%) = 121tr = 100(1+10%)(1+10%)  121 = 100 + 10 + 10 + 1 Lãi ghép Lãi đơn Gố c
  10. Số tiền Số tiền Năm Lãi đơn Lãi gộp Tổng lãi đầu năm cuối năm 1 $100.00 $10 $0 $10 $110.00 2 110.00 10 1 11 121.00 3 121.00 10 2.1 12.1 133.10 4 133.10 10 3.31 13.31 146.41 5 146.41 10 4.64 14.64 161.05 Tổng 50 11.05 61.05
  11. Ví dụ  Anh A vay anh B số tiền là 60 triệu trong 5 năm. Tính số tiền anh A phải trả anh B trong cả 2 trường hợp tính lãi theo phương pháp lãi đơn và phương pháp lãi ghép. Lãi suất quy định là 8%/năm
  12. Quy tắc 72  Số năm cần thiết để một khoản đầu tư tăng gấp đôi giá trị sẽ xấp xỉ bằng 72/r , với r là lãi suất tính theo %/năm  VD: Gửi 100 triệu vào ngân hàng với lãi suất 9%/năm. Sau bao nhiêu năm số tiền này tăng gấp đôi?
  13. Tần suất ghép lãi - APR: lãi suất được công bố theo năm với tần suất ghép lãi nhất định - EAR: lãi suất hiệu quả năm (là lãi suất tương đương với lãi suất APR nhưng chỉ ghép lãi 1 lần 1 năm) EAR = (1+APR/m)m -1 VD: Tính lãi suất hiệu quả năm của 1 hợp đồng tín dụng thời hạn 1 năm, lãi suất 12%/năm, lãi tính 3 tháng/lần và được nhập gốc APR
  14. Tần suất ghép lãi  VD: EAR của khoản vay với lãi suất APR là 6%/năm  Tần suất ghép lãi Công thức EAR  Hàng năm (1 + 0.060)1 – 1 6.00%  Nửa năm một (1 + 0.030)2 – 1 6.09%  Hàng quý (1 + 0.015)4 – 1 6.136%  Hàng ngày (1 + 0.06/365)365 – 1 6.18313%  Liên tục e0.06 – 1 6.18365%  VD: Bạn chọn vay từ ngân hàng nào: - NH A: APR = 12%, ghép lãi 6 tháng/lần - NH B: APR = 11.9%, ghép lãi 1 tháng/lần
  15. II. Phân loại lãi suất  Các tiêu chí phân loại: 1. Theo thời hạn 2. Theo thu nhập thực tế của người cho vay 3. Theo tính linh hoạt của lãi suất 4. Theo nội dung hoạt động của ngân hàng 5. Theo quản lý Nhà nước
  16. 1. Theo thời hạn  a. Lãi suất không kỳ hạn: lãi suất áp dụng cho hợp đồng tín dụng không quy định thời gian đáo hạn  b. Lãi suất ngắn hạn: lãi suất áp dụng cho hợp đồng tín dụng từ 1 năm trở xuống  c. Lãi suất trung và dài hạn: lãi suất áp dụng cho hợp đồng tín dụng trung và dài hạn
  17. 2. Theo thu nhập thực tế của người cho vay a. Lãi suất danh nghĩa (nominal interest rate – NIR) Là mức lãi suất được quy định trong hợp đồng tín dụng và cố định suốt toàn bộ thời gian hợp đồng b. Lãi suất thực (real interest rate – RIR) Là mức lãi suất danh nghĩa đã được điều chỉnh theo tỷ lệ lạm phát  RIR = NIR - tỷ lệ lạm phát ? Khi lạm phát cao, người gửi tiền tiết kiệm hay người vay tiền được lợi
  18. Tài chính tiền tệ- Chương 5 15/04/14 19
  19. 3. Theo tính linh hoạt của lãi suất a. Lãi suất cố định (fixed rate) Là mức lãi suất được quy định chính xác trong suốt thời gian của hợp đồng tín dụng VD: khung lãi suất huy động tiền gửi tiết kiệm cố định của ngân hàng b. Lãi suất thả nổi (floating rate) Là mức lãi suất của hợp đồng tín dụng được neo vào một lãi suất không cố định trên thị trường VD: quy định lãi suất hợp đồng tín dụng mỗi 6 tháng là LS LIBOR 6 tháng cùng kỳ cộng 5 bps
ADSENSE
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2