intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài tập xác suất thống kê -Nguyễn Ngọc Siêng

Chia sẻ: Nguyễn Lâm | Ngày: | Loại File: DOC | Số trang:15

3.638
lượt xem
1.682
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo về bài tập mônxác suất thống kê dành cho sinh viên hệ cao đẳng - đại học tham khảo học tập củng cố kiến thức môn học. Tài liệu hay và bổ ích. GVHD: Nguyễn Ngọc Siêng.

Chủ đề:
Lưu

Nội dung Text: Bài tập xác suất thống kê -Nguyễn Ngọc Siêng

  1. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG Bài 1: Hỏi có bao nhiêu cách xếp r hành khách lên n toa tàu, mỗi người có thể lên 1 toa bất kỳ và mỗi toa chứa hơn r người? Giải.  Để xếp r hành khách lên n toa tàu ta chia làm r giai đoạn, giai đoạn i xếp cho người thứ i. Số cách xếp là n ( ).  Theo quy tắc nhân số cách xếp r hành khách lên n toa tàu là: Bài 2: 1 người chọn số PIN có 6 chữ số của thẻ ATM: a) Hỏi có bao nhiêu số PIN người đó có thể chọn? b) Hỏi có bao nhiêu số PIN có 6 chữ số khác nhau? Giải: a) Mỗi số PIN có 6 chữ số là 1 chỉnh hợp lặp chập 6 từ 10 phần tử (0, 1, 2, ….,9). Vậy số các số Pin có 6 chữ số là: b) Một số PIN có 6 chữ số khác nhau là 1 chỉnh hợp chập 6 từ 10 phần tử (0, 1, 2, ….,9). Vậy số các số Pin có 6 chữ số khác nhau là: Bài 3: 1 công ty cần tuyển 4 nhân viên, có 15 người nộp hồ sơ, trong đó có 10 nam và 5 nữ. Khả năng được tuyển của mỗi người như nhau. a) Hỏi có bao nhiêu kết quả đồng khả năng xảy ra? b) Hỏi có bao nhiêu kết quả 4 người được tuyển gồm 2 nam 2 nữ? Giải: a) Mỗi kết quả đồng khả năng là chọn ra 4 người từ 15 người không kể thứ tự là 1 tổ hợp chập 4 từ 15 phần tử. Vậy số kết quả đồng khả năng xảy ra là : b) Để có kết quả 4 người được tuyển có 2 nam 2 nữ ta chia làm 2 giai đoạn:  Giai đoạn 1: Chọn 2 nam trong 10 nam, số cách chọn là:  Giai đoạn 1: Chọn 2 nữ trong 5 nữ, số cách chọn là: Vậy số kết quả của 4 người được tuyển có 2 nam 2 nữ là: Nguyễn Phan Thanh Lâm Trang 1
  2. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG Bài 4: 1 hộp có 6 bi đỏ 4 bi xanh, lấy ngẫu nhiên ra 1 bi, tìm xác suất bi lấy ra là bi đỏ. Giải: « Số kết quả đồng khả năng xảy ra là: « Gọi A là biến cố bi lấy ra là bi đỏ. « Số kết quả thuận lợi cho A xảy ra là: « Xác suất bi lấy ra là bi đỏ là: Bài 5: Một hộp có 6 bi đỏ, 4 bi xanh lấy ngẫu nhiên ra 4 bi. Tìm xác suất 4 bi lấy ra có 2 bi đỏ và 2 bi xanh. Giải: « Số kết quả đồng khả năng xảy ra là: « Gọi A là biến cố 4 bi lấy ra có 2 bi đỏ và 2 bi xanh: « Vậy Bài 6: Một người mua 1 vé số có 5 chữ số tìm xác suất: a) Để người đó trúng giải 8? b) Để người đó trúng giải khuyến khích? Giải: Mỗi vé số có 5 chữ số là 1 chỉnh hợp lặp chập 5 từ 10 phần tử (0,1,…..,9), vậy số vé số có 5 chữ số là: Mua 1 vé số kết quả đồng khả năng xảy ra là 100.000 Nguyễn Phan Thanh Lâm Trang 2
  3. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG a) Gọi A là biến cố người đó trúng giải 8, giả sử giải tám là ab, khi đó các vé trúng giải tám là xyzab ứng với 1 chỉnh hợp lặp chập 3 : x,y,z từ 10 phần tử (0,1,…..9), vậy số vé số trúng giải tám là: « Số kết quả thuận lợi cho A xảy ra là 1000. « Vậy b) Gọi B là biến cố người đó trúng giải khuyến khích.  Giả sử giải đặc biệt là: abcde  Các vé trúng giải khuyến khích: • xbcde (x#a) có 9 vé. • axcde (x#b) có 9 vé. • abxde (x#c) có 9 vé. • abcxe (x#d) có 9 vé. • abcdx (x#e) có 9 vé. « Số vé trúng giải khuyến khích là: 9.5 = 45 « Vậy số kết quả thuận lợi cho B xảy ra là 45 « Vậy Bài 7: Hai người A và B hẹn gặp nhau tại 1 địa điểm trong khoảng thời gian từ 8h đến 9h, người đến trước đợi người kia quá 15’ bỏ đi, tìm xác suất để A, B gặp nhau. Giải: Quy gốc thời gian về 8h. • Gọi x,y lần lượt là thời điểm tới điểm hẹn (đơn vị phút) của A và B, khi đó , . • Mỗi kết quả đồng khả năng là cặp x,y với đó , . • Khi đó không gian mẫu các kết quả đồng khả năng. là miền phẳng giới hạn bởi hình vuông OCDE. • Số đo ( diện tích (OCDE) = 602 • Gọi F là biến cố A và B gặp nhau, khi đó mỗi phần tử của F là cặp (x,y) sao cho khoảng cách giữa Nguyễn Phan Thanh Lâm Trang 3
  4. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG Vậy là miền phẳng giới hạn bởi đa giác lồi OIJDLM. Số đo (F) = diện tích (OIJDLM) = 602 – 2. Bài 8: Một hộp có 6 bi đỏ và 4 bi xanh lấy cùng lúc ra 3 bi, tìm: a) Xác suất 3 bi lấy ra cùng màu. b) Xác suất 3 bi lấy ra có ít nhất 1 bi đỏ. Giải: a) Gọi A là biến cố 3 bi lấy ra đều là bi đỏ. B là biến cố 3 bi lấy ra đều là bi xanh. C là biến cố 3 bi lấy ra cùng màu. Khi đó , hai biến cố A, B xung khắc nên: Ta có: Vậy b) Gọi D là biến cố 3 bi lấy ra có ít nhất 1 bi đỏ. Cách 1 Gọi là biến cố đối lập của biến cố D, tức là biến cố 3 bi lấy ra đều là xanh. Khi đó Vậy Cách 2 Gọi Ai là biến cố 3 bi lấy ra đều đúng i bi đỏ (i = 1,2,3), khi đó: các biến cố A1, A2, A3 xung khắc từng đôi nên: Trong đó: Nguyễn Phan Thanh Lâm Trang 4
  5. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG Bài 9: Trong 1 kho chứa tivi có số liệu I hes nc 21 35 45 ệ Hi u Sony 8 7 5 LG 5 8 9 Sam s ung 6 7 3 chọn ngẫu nhiên 1 TV để kiểm tra, tìm xác suất để TV chọn ra là TV Sony hoặc TV 45 inches. Giải: Gọi A là biến cố TV chọn ra kiểm tra là TV sony. B là biến cố TV chọn ra kiểm tra là TV 45 inches. C là biến cố TV chọn ra kiểm tra là TV sony hoặc 45 inches. Khi đó ; hai biến cố A và B độc lập nên Từ bảng số liệu: Vậy Bài 10: Một hộp có 3 bi đỏ và 2 bi xanh, lấy lần lượt từng bi 1 cho tới khi lấy được 2 bi xanh thì thôi, tìm xác suất để lấy đến viên thứ 3 thì thôi. Giải: Gọi Ai là biến cố lấy được bi xanh ở lần thứ i (i = 1,2,3) là biến cố đối lập với biến cố Ai (i = 1,2,3) A là biến cố lấy đến viên thứ 3 thì thôi. Khi đó: , hai biến cố , xung khắc nên: Nguyễn Phan Thanh Lâm Trang 5
  6. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG • • Vậy Bài 11: Một người nhặt được 1 thẻ ATM có số PIN 6 chữ số, người đó giao dịch với máy ATM cho tới khi giao dịch được hoặc bị thu thẻ thì thôi. Tìm xác suất người đó giao dịch được. Giải: Gọi A là biến cố người đó giao dịch được. là biến cố đối lập với biến cố A, tức là biến cố người đó bị thu thẻ. Khi đó: nên Ta có: Vậy Bài 12: Một thiết bị có 3 bộ phận hoạt động độc lập, xác suất hỏng của bộ phận 1, bộ phận 2, bộ phận 3 trong khoảng thời gian t tương ứng là 0,1; 0,2; 0,3 a) Tìm xác suất để trong khoảng thời gian t cả 3 bộ phận đều hỏng. b) Tìm xác suất để trong khoảng thời gian t có ít nhất 1 bộ phận hỏng. c) Tìm xác suất để trong khoảng thời gian t có đúng 1 bộ phận hỏng. Giải: a) Gọi Ai là biến cố bộ phận i bị hỏng trong khoảng thời gian t (i = 1,2,3) là biến cố đối lặp với biến cố Ai (i = 1,2,3) Nguyễn Phan Thanh Lâm Trang 6
  7. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG Gọi A là biến cố cả 3 bộ phận đều hỏng, khi đó A = A1A2A3; các biến cố A1, A2, A3 độc lập nên: b) Gọi B là biến cố có ít nhất 1 bộ phận hỏng Cách 1:     Vậy Cách 2: Gọi là biến cố đối lặp với biến cố B, khi đó: các biến cố độc lập nên: Vậy c) Gọi C là biến cố có đúng 1 bộ phận bị hỏng, khi đó: các biến cố xung khắc từng đôi nên ta có Vậy Bài 13: Một nhà máy có 3 phân xưởng; phân xưởng 1, phân xưởng 2 , phân xưởng 3 sản xuất 1 lượng sản phẩm tương ứng 30%, 50%, 20%, biết tỷ lệ phế phẩm do phân xưởng 1, phân xưởng 2 , phân xưởng 3 sản xuất tương ứng là 2%, 3%, 4%. Lấy ngẫu nhiên 1 sản phẩm của nhà máy. Tìm xác suất sản phẩm lấy ra là phê phẩm từ đó suy ra tỉ lệ phế phẩm của nhà máy. Giải: Gọi Ai là biến cố sản phẩm lấy ra do phân xưởng i sản xuất (i = 1,2,3) p(A1) = 30% = 0,3 Nguyễn Phan Thanh Lâm Trang 7
  8. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG p(A2) = 50% = 0,5 p(A3) = 20% = 0,2 Các biến cố A1, A2, A3 hệ đầy đủ Gọi A là biến cố sản phẩm lấy ra là phế phẩm, áp dụng công thức xác suất toàn phần ta có: trong đó: Vậy p(A) = 0,029 = 2,9% Tỉ lệ phế phẩm của nhà máy p = p(A) = 2,9% Bài 14: Có 2 chiếc hộp, hộp 1 có 6 bi đỏ và 4 bi xanh, hộp 2 có 5 bi đỏ 3 bi xanh. Lấy ngẫu nhiên 2 bi từ hộp 1 bỏ vào hộp 2 rồi sau đó từ hộp 2 lấy ra 2 bi. a) Tìm xác suất 2 bi lấy ra từ hộp 2 là bi đỏ. b) Biết 2 bi lấy ra từ hộp 2 là bi đỏ, tìm xác suất 2 bi lấy ra từ hộp 1 có 1 bi đỏ và 1 bi xanh. Giải: Gọi Ai là biến cố 2 bi lấy ra từ hộp 1 bỏ vào hộp 2 có i bi đỏ (i = 1,2) Các biến cố A1, A2, A3 tạo thành hệ đầy đủ. Gọi A là biến cố 2 bi lấy ra từ hộp 2 là 2 bi đỏ, áp dụng công thức xác suất toàn phần ta có: ta có: Nguyễn Phan Thanh Lâm Trang 8
  9. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG Vậy Áp dụng công thức Bayes ta có: Bài 15: Có 2 chiếc hộp, hộp 1 có 6 bi đỏ và 4 bi xanh, hộp 2 có 5 bi đỏ 3 bi xanh. Lấy ngẫu nhiên 1 bi từ hộp 1 bỏ vào hộp 2 rồi sau đó từ hộp 2 lấy ra 2 bi. Tìm xác suất 2 bi lấy ra từ hộp 2 là bi đỏ. Giải: Gọi A1 là biến cố bi lấy từ hộp 1 bỏ vào hộp 2 là bi đỏ. A2 là biến cố bi lấy từ hộp 1 bỏ vào hộp 2 là bi xanh. Hai biến cố A1, A2 tạo thành hệ đầy đủ. Gọi A là biến cố 2 bi lấy ra từ hộp 2 là 2 bi đỏ, áp dụng công thức xác suất toàn phần ta có: Vậy Bài 16: Một thùng sản phẩm có 20 sản phẩm, trong đó có 15 chính và 5 phế phẩm. Trong qúa trình vận chuyển bị mất 2 sản phẩm không rõ chất lượng, ta lấy ngẫu nhiên 2 sản phẩm trong 18 sản phẩm còn lại. a) Tìm xác suất 2 sản phẩm lấy ra đều là chính phẩm. Nguyễn Phan Thanh Lâm Trang 9
  10. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG b) Biết 2 sản phẩm lấy ra đều là chính phẩm, tìm xác suất để 2 sản phẩm bị mất có 1 chính và 1 phế phẩm. Giải: a) Gọi Ai là biến cố 2 sản phẩm bị mất có i chính phẩm (i = 0,1,2) Gọi A là biến cố 2 sản phẩm lấy ra là chính, áp dụng công thức xác suất toàn phần ta có: Vậy b) Áp dụng công thức Bayes: Bài 17: Một hộp có 10 quả bóng bàn, trong đó có 6 quả mới và 4 quả đã sử dụng. + Lần 1 lấy ngẫu nhiên 1 quả thi đấu xong bỏ lại. + Lần 2 lấy ngẫu nhiên 2 quả thi đấu. Tìm xác suất 2 quả lấy ra đều mới. Giải: Gọi A1 là biến cố quả bóng bàn lấy ra thi đấu lần 1 là quả mới. là biến cố quả bong bàn lấy ra thi đấu lần 1 là quả đã sử dụng. Gọi A là biến cố 2 quả bóng bàn lấy ra thi đấu lần 2 là quả mới, áp dụng công thức xác suất toàn phần ta có: Nguyễn Phan Thanh Lâm Trang 10
  11. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG trong đó: Vậy Bài 18: Có 2 chiếc hộp hình thức giống nhau + Hộp 1 có 7 bi đỏ và 3 bi xanh. + Hộp 2 có 6 bi đỏ và 4 bi xanh. Chọn ngẫu nhiên 1 hộp rồi từ hộp đó lấy ra 2 bi. a) Tìm xác suất 2 bi lấy ra là 2 bi đỏ. b) Biết 2 bi lấy ra là 2 bi đỏ, tìm xác suất để 2 bi đó là 2 bi đỏ thuộc hộp 1. Giải: a) Gọi Ai là biến cố hộp chọn ra là hộp i (i = 1,2). hai biến cố A1, A2 tạo thành hệ đầy đủ. Gọi A là biến cố 2 bi lấy ra là bi đỏ, áp dụng công thức xác suất toàn phần ta có: Vậy b) Áp dụng công thức Bayes ta có: Bài 19: Một thiết bị có 2 bộ phận hoạt động độc lập, xác suất hỏng của bộ phận thứ i là 0,i; Nếu có đúng 1 bộ phận bị hỏng thì xác suất thiết bị bị hỏng là 0,6; nếu cả 2 bộ phận bị hỏng thì thiết bị chắc chắn bị hỏng. Nguyễn Phan Thanh Lâm Trang 11
  12. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG a) Tìm xác suất để thiết bị bị hỏng. b) Tìm xác suất có ít nhất 1 bộ phận bị hỏng. Giải: a) Gọi Ai là biến cố bộ phận thứ i bị hỏng (i = 1,2) là biến cố đối lập với biến cố Ai Gọi Bi là biến cố trong 2 bộ phận có i bộ phận hỏng (i = 0,1,2) ta có là 2 biến cố đối lập nên: ; hai biến cố xung khắc nên Hai biến cố nên: ta có A1A2 là 2 biến cố đối lập nên: Các biến cố B0, B1, B2 tạo thành hệ đầy đủ. Gọi A là biến cố thiết bị bị hỏng, áp dụng công thức xác suất toàn phần ta có: Vậy b) Gọi B là biến cố có ít nhất 1 bộ phận hỏng, là biến cố đối lập với biến cố B, tức là biến cố 2 bộ phận không hỏng. , ta có là 2 biến cố độc lập. Bài 20: 2 quả tên lửa bắn vào 1 mục tiêu độc lập, xác suất để quả thứ 1 và thứ 2 bắn trúng mục tiêu là 0,6; 0,7. Nếu có 1 quả trúng mục tiêu thì mục tiêu bị diệt với xác suất là 0,8, nếu cả 2 quả trúng mục tiêu thì mục tiêu chắc chắn bị tiêu diệt. Tìm xác suất mục tiêu bị tiêu diệt. Giải: Gọi Ai là biến cố có quả tên lửa thứ i bắn trúng mục tiêu (i = 1,2) là biến cố đối lập với biến cố Ai Ta có : Gọi Bi là biến cố trong 2 quả tên lửa có i quả tên lửa bắn trúng mục tiêu (i = 0,1,2). Nguyễn Phan Thanh Lâm Trang 12
  13. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG , hai biến cố độ lập nên ; hai biến cố xung khắc nên các biến cố độc lập nên ; hai biến cố độc lập nên Các biến cố B0, B1, B2 tạo thành hệ đầy đủ. Gọi A là biến cố mục tiêu bị tiêu diệt, áp dụng công thức xác suất toàn phần ta có: trong đó: Vậy Bài 21: Có 2 chiếc hộp, hộp 1 có 5 bi đỏ và 3 bi xanh, hộp 2 có 4 bi đỏ và 2 bi xanh, lấy ngẫu nhiên từ hộp 1 ra 2 bi và hộp 2 ra 1 bi. a) Tìm xác suất để 3 bi lấy ra đều màu đỏ. b) Trong 3 bi lấy ra, lấy ngẫu nhiên 2 bi, tìm xác suất 2 bi lấy ra là bi đỏ. Giải: a) Gọi Ai là biến cố 2 bi lấy ra từ hộp 1 có i bi đỏ (i = 0,1,2) Gọi Bi là biến cố bi lấy ra từ hộp 2 có i bi đỏ (i = 0,1) Gọi A là biến cố 3 bi lấy ra đều màu đỏ, A=A2.B1; hai biến cố A2, B1 độc lập nên b) Gọi Ci là biến cố 3 bi lấy ra có i bi đỏ (i = 0,1,2,3) ; hai biến cố độc lập nên ; hai biến cố xung khắc nên các biến cố nên Nguyễn Phan Thanh Lâm Trang 13
  14. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG ; Hai biến cố xung khắc nên ; các biến cố độc lập nên Các biến cố C0, C1, C2, C3, tạo thành hệ đầy đủ. Gọi B là biến cố 2 bi lấy ra từ 3 bi đó là 2 bi đỏ, áp dụng công thức xác suất toàn phần ta có: trong đó Vậy Bài 22: Một đề thi trắc nghiệm có 20 câu, trong đó mỗi câu có 5 cách trả lời và chỉ có 4 cách đúng. Sinh viên A không học bài làm bài 1 cách nhẫu nhiên, tìm xác suất sinh viên A làm đúng 12 câu. Giải: • Xác suất sinh viên làm đúng 1 câu là: • Bài toán thỏa mãn giả thiết định lý Becnuli với n = 20, p = 0,2, xác suất để sinh viên làm đúng 12 câu là: Bài 23: Một giá súng có 10 cây súng cùng loại, trong đó có 6 cây loại 1 và 4 cây loại 2. Sạ thủ bắn trúng đích ở mỗi phát với súng loại 1 và loại 2 tương ứng là 0,8; 0,6. Xạ thủ A chọn ngẫu nhiên 1 cây và bắn 5 phát, tìm xác suất có đúng 3 phát trúng. Giải: Gọi Ai là biến cố xạ thủ chọn súng loại i (i = 1,2) ta có 2 biến cố A1, A2 hệ đầy đủ Gọi A là biến cố xạ thủ bắn 5 phát trúng 3 phát, áp dụng công thức xác suất toàn phần ta có: Nếu xạ thủ a chọn súng loại 1 ta có lược đồ Becnuli n = 5, p = 0,8 Nguyễn Phan Thanh Lâm Trang 14
  15. Bài tập xác suất xác suất thống kê GVHD: NGUYỄN NGỌC SIÊNG Nếu xạ thủ a chọn súng loại 2 ta có lược đồ Becnuli n = 5, p = 0,6 Vậy Nguyễn Phan Thanh Lâm Trang 15
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2