❙❯❻ ❚❍➮◆● ❑➊
!♥ ❤➜% &
◆➤♥❣✱ ✷✵✶✾
!♥ ❤➜% & ✶✴✹✵
❤"#♥❣ ✺✳ () ❧",♥❣ -❤❛♠ 01
✶✳ ,- ❧01♥❣ ✤✐➸♠
✶✳✶ 6♥❤ ♥❣❤➽❛
❈❤♦ ♠➝✉ ♥❣➝✉ ♥❤✐➯♥
{X1, X2, ..., Xn}
+, +-♥❣ +❤➸ ❝0 ♣❤➙♥ ♣❤3✐ ♣❤4 +❤✉5 ✈➔♦
+❤❛♠ 93
θ
❝❤:❛ ❜✐➳+✳ ❑❤✐ ✤0✱ ♠5+ ❤➔♠ +❤3♥❣ ➯✮
ˆ
θ=ˆ
θ(X1, ..., Xn)
✤:D ❣E✐ ❧➔ ♠5+
! ❧ $♥❣
❝G❛ +❤❛♠ 93
θ
I✐ ♠5+ ♠➝✉ ❣✐→ +KL ❝4 +❤➸
{x1, x2, ..., xn}
+❛ +❤✉ ✤:D ♠5+ ❣✐→ +KL ❝4 +❤➸ ❝G❛
ˆ
θ
❑❤✐ ✤0✱ ❣✐→ +KL
ˆ
θ(x1, ..., xn)
✤:D ❣E✐ ❧➔
! ❧ $♥❣ ✤✐➸♠
❝G❛ +❤❛♠ 93
θ
❞N❛ +K➯♥ ♠➝✉ ❣✐→
+KL
{x1, x2, ..., xn}
!♥ ❤➜% & ✷✴✹✵
✶✳✷ :❤➙♥ ❧♦↕✐ 0- ❧01♥❣
OI ❧:D♥❣
ˆ
θ=ˆ
θ(X1, ..., Xn)
✤:D ❣E✐ ❧➔
! ❧ $♥❣ ❦❤-♥❣ ❤➺❝❤
❝G❛ +❤❛♠ 93
θ
♥➳✉
E(ˆ
θ) = θ
K♦♥❣ +K:Q♥❣ ❤D♣ ♥❣:D ❧↕✐ +❤➻ +❛ ❣E✐
ˆ
θ
✤:D ❣E✐ ❧➔
! ❧ $♥❣ ❝❤➺❝❤
✈➔ ❣✐→ +KL
b(θ) =
E(ˆ
θ)θ
✤:D ❣E✐
✤/ ❝❤➺❝❤ ❝0❛ ! ❧ $♥❣
OI :D♥❣
ˆ
θ=ˆ
θ(X1, ..., Xn)
✤:D ❣E✐ ❧➔
! ❧ $♥❣ ❦❤-♥❣ ❝❤➺❝❤ 2✐➺♠ ❝➟♥
❝G❛ +❤❛♠
93
θ
♥➳✉
lim
n+E(ˆ
θ) = θ.
❈❤♦
ˆ
θ1
✈➔
ˆ
θ2
❧➔ ❤❛✐ :I ❧:D♥❣ ❦❤T♥❣ ❝❤➺❝❤ ❝G❛ +❤❛♠ 93
θ
♥0✐ :I ❧:D♥❣
ˆ
θ1
❤✐➺✉
5✉↔ ❤7♥
:I ❧:D♥❣
ˆ
θ2
♥➳✉
D(ˆ
θ1)< D(ˆ
θ2)
OI ❧:D♥❣
ˆ
θ
❝G❛
θ
❧➔ :I ❧:D♥❣ ❦❤T♥❣ ❝❤➺❝❤ ✈➔ ❝0 ♣❤:V♥❣ 9❛✐
D(ˆ
θ)
♥❤➜+ ✤:D
❣E✐ ❧➔
! ❧ $♥❣ 282 ♥❤➜2
!♥ ❤➜% & ✸✴✹✵
! ❧$%♥❣ ❦❤*♥❣ ❝❤➺❝❤ ❝,❛ ./✉♥❣ ❜➻♥❤ ✈➔ ♣❤$6♥❣ 7❛✐
✣:♥❤ ❧;✿
❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥
X
❝,❛ /0 01♥❣ 0❤➸ ❝3
E(X) = µ, D(X) = σ2
●✐ 78
{X1, X2, ..., Xn}
❧➔ ♠➝✉ ♥❣➝✉ ♥❤✐➯♥ ❝,❛
X
❑❤✐ ✤3✿
✐✮
X=1
n
n
P
i=1
Xi
❧➔ ?@ ❧?A♥❣ ❦❤C♥❣ ❝❤➺❝❤ ❝,❛
µ
✐✐✮
S2=1
n1
n
P
i=1
(XiX)2
❧➔ ?@ ❧?A♥❣ ❦❤C♥❣ ❝❤➺❝❤ ❝,❛
σ2
◆❤➟♥ ①➨.✿
3 0❤➸ ❝❤E♥❣ ♠✐♥❤ ✤?A F➡♥❣✿
E(S2
) = n1
nσ2
✈@✐
S2
=1
n
n
X
i=1
(Xi¯
X)2
✣✐➲✉ ♥➔ ❝3 ♥❣❤➽❛
S2
❧➔ ?@ ❧?A♥❣ ❝❤➺❝❤ ✭❦❤C♥❣ ❤➺❝❤ 0✐➺ ❝➟♥✮ ❝,❛
σ2
❞♦ ✤3 ♥3
✓❦❤C♥❣ ✤?A ❤R♥✔ ❧➔♠ ♣❤?U♥❣ 7❛✐ ♠➝✉✳
!♥ ❤➜% & ✹✴✹✵
! ❧$%♥❣ ❦❤*♥❣ ❝❤➺❝❤ ❝,❛ .➾ ❧➺
✣:♥❤ ❧;✿
❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥
X
❝3 ♣❤➙♥ ♣❤W✐ ❇❡F♥♦✉❧❧✐ ✈@✐ 0❤❛♠ 7W
p
●R
(X1, X2, ..., Xn)
❧➔ ♠➝✉ ♥❣➝✉ ♥❤✐➯♥ ❝,❛
X
❑❤✐ ✤3✿
ˆ
P=X1+X2+... +Xn
n
❧➔ ♠/0 ?@ ❧?A♥❣ ❦❤C♥❣ ❝❤➺❝❤ ❝,❛ 0❤❛♠ 7W
p
B ♥❣❤➽❛✿
◆➳✉ ❞➜✉ ❤✐➺✉
A
❝3 0➾ ❧➺
p
❝❤?❛ ❜✐➳0✱ ✈➔ 0F♦♥❣ ♠➝✉ ✤✐➲✉ 0F❛ ❦➼❝❤ 0❤?@
n
❝3
k
❝→ 0❤➸ ♠❛♥❣ ❞➜✉ ❤✐➺✉
A
0❤➻ 0➛♥ 7✉➜0
fn=k/n
❧➔ ♠/0 ?@ ❧?A♥❣ ❦❤C♥❣ ❝❤➺❝❤ ❝,❛
p
!♥ ❤➜% & ✺✴✹✵
❱➼ ❞G
❈❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥
X
❝- ❦/ ✈1♥❣
µ
✈➔ ♣❤45♥❣ 6❛✐
σ2
❝❤4❛ ❜✐➳8✳ ✣➸ 4< ❧4>♥❣
❝❤♦
µ
✈➔
σ2
♥❣4?✐ 8❛ 8✐➳♥ ❤➔♥❤ ✤✐➲✉ 8B ♠➝✉ ❦➼❝❤ 8❤4< ✷✵✵ ✈➔ 8➼♥❤ ✤4> 8B✉♥❣ ❜➻♥❤ ✈➔
♣❤45♥❣ 6❛✐ ❝❤✉➞ ♠➝✉✿
¯x= 125,8; s2= 2,76
❑❤✐ ✤-✱ 8❛ ❝- 8❤➸ ①❡♠
µ125,8
✈➔
σ22,76
✣➸ 4< ❧4>♥❣ 8➾ ❧➺
p
❝P 8B✐ Q♥❣ ❤R ❝❤♦ S♥❣ ❝P ✈✐➯♥ ❆✱ ♥❣4?✐ 8❛ ❦❤↔♦ 6→8 ♥❣➝✉ ♥❤✐➯♥
4000
♥❣4?✐ 8❤➻ ❝- ✷✻✹✵ ♥❣4?✐ Q♥❣ ❤R S♥❣ ❝P ✈✐➯♥ ♥➔ ◆❤4 ✈➟ 8❛ ❝- 8❤➸ ①❡♠ 8➾ ❧➺ Q♥❣
❤R S♥❣ ❝P ✈✐➯♥ ①➜♣ ①➾✿
p2640/4000 = 0,66
!♥ ❤➜% & ✻✴✹✵
X θ
{X1, X2, ..., Xn}L=L(X1, ..., Xn)U=U(X1, ..., Xn)
α(0,1)
P(L < θ < U) = 1 α.
(L, U)θ1α
α U L
(L, U)θ
1α
1α
α1, α2(0,1) α1+α2=α
Gn=Gn(X1, ..., Xn, θ)
GnGn
n θ Gn
θ
a b P (Gna) = α1P(Gn< b) = 1 α2
a < Gn(X1, ..., Xn, θ)< b θ
L, U
P(L < θ < U)1α.
α1= 0 α2= 0
✳✷ ❑❤♦↔♥❣ (✐♥ ❝➟ ❝❤♦ ❦➻ ✈0♥❣ ❦❤✐ ✤➣ ❜✐➳( ♣❤67♥❣ 8❛✐
❇➔✐ (♦→♥
❈❤♦ ❜✐➳♥ ♥❣➝✉ ♥❤✐➯♥
X
❝-❛ ♠01 12♥❣ 1❤➸ ❝4 ♣❤➙♥ ♣❤7✐ ❝❤✉➞♥
N(µ;σ2)
✈:✐
µ
❝❤;❛ ❜✐➳1 ✈➔
σ2
✤➣ ❜✐➳1✳ ❚➻ ❦❤♦↔♥❣ 1✐♥ ❝➟ ❝❤♦
µ
✈:✐ ♠E❝ F ♥❣❤➽❛
α
●>✐ ?
◆➳✉
{X1, X2, ..., Xn}
❧➔ ♠➝✉ ♥❣➝✉ ♥❤✐➯♥ ❝-❛
X
1❤➻
Z=Xµ
σ/nN(0; 1).
:✐
α(0; 1)
❝❤M♥
α1=α2=α/2
✈➔
zα/2= Φ1(1 α
2)
❧➔
❣✐→ (@A (B ❤↕♥
♠E❝
α/2
❝-❛ ♣❤➙♥ ♣❤7✐ ❝❤✉➞♥ 1➢❝✱ ❣✐↔✐ ❜➜1 ♣❤;P♥❣ 1Q➻♥❤✿
zα/2< Z < zα/2Xzα/2
σ
n< µ < X+zα/2
σ
n
1❛ ✤;S ❦❤♦↔♥❣ 1✐♥ ❝➟ ✤7✐ ①E♥❣✳
◆➳✉ ❝❤M♥
α1= 0
❤♦➦❝
α2= 0
▲W❝ ♥➔ 1❛ 1❤❛
zα/2
X✐
zα
✈➔ 1❤✉ ✤;S ❦❤♦↔♥❣ 1✐♥
❝➟ ♠01 ♣❤➼❛✳
!♥ ❤➜% & ✶✵✴✹✵
!♥ ❤➜% & ✶✶✴✹✵
❛✳ ❑➳( D✉↔
:✐ ✤0 1✐♥ ❝➟
1α
❑❤♦↔♥❣ 1✐♥ ❝➟ ✤7✐ ①E♥❣ ❝-❛
µ
xzα/2
σ
n< µ < x+zα/2
σ
n,
❑❤♦↔♥❣ 1✐♥ ❝➟ 17✐ ✤❛ ❝-❛
µ
µ < x+zα
σ
n.
❑❤♦↔♥❣ 1✐♥ ❝➟ 17✐ 1❤✐➸ ❝-❛
µ
µ > xzα
σ
n.
!♥ ❤➜% & ✶✷✴✹✵
❞#
❤"✐ ❧%&♥❣ ✭❦❣✮ ❝-❛ ♠01 1❤✐➳1 ❜4 5 ♣❤➙♥ ♣❤"✐ ❝❤✉➞♥
N(µ;σ2)
✈;✐
σ= 0.2
✭❦❣✮✳ ❈❤>♥
♥❣➝✉ ♥❤✐➯♥ ✷✺ 1❤✐➳1 ❜4 ♥❣%C✐ 1❛ 1➼♥❤ ✤%& 1F✉♥❣ ❜➻♥❤ ♠➝✉
x= 65,1
✭❦❣✮✳ ;✐ ✤0 1✐♥ ❝➟
✾✺✪ ❤➣ 1➻♠ ❦❤♦↔♥❣ 1✐♥ ❝➟ ✭✤"✐ ①Q♥❣✮ ❝❤♦ ❦❤"✐ ❧%&♥❣ 1F✉♥❣ ❜➻♥❤ ❝-❛ 1❤✐➳1 ❜4 ♥➔ ❈❤♦
❜✐➳1
z0,025 = 1,96
●✐↔✐✳
❈→❝ $% ✤➦❝ ()*♥❣ ♠➝✉✿
n= 25; ¯x= 65,1
✣3 (✐♥ ❝➟②✿
1α= 0,95 α= 0,05; zα/2=z0,025 = 1,96
❙❛✐ $% *9 ❧*;♥❣✿
ε=zα/2
σ
n= 1,96 0,2
25 = 0,0784
❑❤♦↔♥❣ (✐♥ ❝➟ ❝❤♦ ❤%✐ ❧*;♥❣ ()✉♥❣ ❜➻♥❤
µ
❝C❛ (❤✐➳( E ♥➔②✿
¯xε < µ < ¯x+ε65,02 < µ < 65,18
!♥ ❤➜% & ✶✸✴✹✵
❜✳ ➜♥ ✤➲ ❝/ ♠➝✉
❚H ❝I♥❣ (❤J❝ ❦❤♦↔♥❣ (✐♥ ❝➟ ❝❤♦
µ
(❛ (❤➜ )➡♥❣ $❛✐ $% ❝C❛ *9 ❧*;♥❣
|xµ|
❤N♥
❤♦➦❝ ❜➡♥❣
zα/2
σ
n
❙❛✐ $% *9 ❧*;♥❣✿
ε=zα/2
σ
n
✣✐➲✉ ❦✐➺♥ ❤↕♥ ❝❤➳✿
ε <
✈9✐
>0
❝❤♦ ()*9❝✳
ε=zα/2
σ
n<
●✐↔✐ ➜( ♣❤*N♥❣ ()➻♥❤ (❤❡♦
n
n > zα/2σ
2
.
!♥ ❤➜% & ✶✹✴✹✵
❞#
FT ❧↕✐ ✈;✐ ❱➼ ❞W ♥➳✉ ➯✉ ❝➛✉ Y❛✐ Y" %; ❧%&♥❣ ❦❤Z♥❣ ✈%&1 [✉→ ✵✱✵✺ 1❤➻ ✈;✐ ✤0 1✐♥ ❝➟
✾✽✪ 1❛ ❝➛♥ ❝❤>♥ 1"✐ 1❤✐➸✉ ❜❛♦ ♥❤✐➯✉ 1❤✐➳1 ❜4 ✤➸ ❦❤↔♦ Y→1❄ ❈❤♦ ❜✐➳1
z0,01 = 2,326
●✐↔✐✳
❙❛✐ $% *9 ❧*;♥❣✿
ε=zα/2
σ
n
✣✐➲✉ ❦✐➺♥ ❤↕♥ ❝❤➳✿
ε < = 0,05
❙✉② )
n > zα/2σ
2
.
✣3 (✐♥ ❝➟②✿
1α= 0,98 α= 0,2; zα/2=z0,01 = 2,326
❉♦ ✤W✿
n > 2,326 0,2
0,05 2
= 86,56
❦➼❝❤ (❤*9 ♠➝✉ (%✐ (❤✐➸✉ ❝➛♥ ❦❤↔♦ $→(✿
n= 87
!♥ ❤➜% & ✶✺✴✹✵