
❳⑩❈ ❙❯❻❚ ❚❍➮◆● ❑➊
❚!♥ ❚❤➜% ❚&
✣➔ ◆➤♥❣✱ ✷✵✶✾
❚!♥ ❚❤➜% ❚& ✶✴✹✵
❈❤"#♥❣ ✺✳ ()❝ ❧",♥❣ -❤❛♠ 01
✶✳ ,-❝ ❧01♥❣ ✤✐➸♠
✶✳✶ ✣6♥❤ ♥❣❤➽❛
✲ ❈❤♦ ♠➝✉ ♥❣➝✉ ♥❤✐➯♥
{X1, X2, ..., Xn}
+, +-♥❣ +❤➸ ❝0 ♣❤➙♥ ♣❤3✐ ♣❤4 +❤✉5❝ ✈➔♦
+❤❛♠ 93
θ
❝❤:❛ ❜✐➳+✳ ❑❤✐ ✤0✱ ♠5+ ❤➔♠ ✭+❤3♥❣ ❦➯✮
ˆ
θ=ˆ
θ(X1, ..., Xn)
✤:D❝ ❣E✐ ❧➔ ♠5+
!❝ ❧ $♥❣
❝G❛ +❤❛♠ 93
θ
✳
✲ ❱I✐ ♠5+ ♠➝✉ ❣✐→ +KL ❝4 +❤➸
{x1, x2, ..., xn}
+❛ +❤✉ ✤:D❝ ♠5+ ❣✐→ +KL ❝4 +❤➸ ❝G❛
ˆ
θ
✳
❑❤✐ ✤0✱ ❣✐→ +KL
ˆ
θ(x1, ..., xn)
✤:D❝ ❣E✐ ❧➔
!❝ ❧ $♥❣ ✤✐➸♠
❝G❛ +❤❛♠ 93
θ
❞N❛ +K➯♥ ♠➝✉ ❣✐→
+KL
{x1, x2, ..., xn}
✳
❚!♥ ❚❤➜% ❚& ✷✴✹✵
✶✳✷ :❤➙♥ ❧♦↕✐ 0-❝ ❧01♥❣
✲ OI❝ ❧:D♥❣
ˆ
θ=ˆ
θ(X1, ..., Xn)
✤:D❝ ❣E✐ ❧➔
!❝ ❧ $♥❣ ❦❤-♥❣ ❝❤➺❝❤
❝G❛ +❤❛♠ 93
θ
♥➳✉
E(ˆ
θ) = θ
✳
❚K♦♥❣ +K:Q♥❣ ❤D♣ ♥❣:D❝ ❧↕✐ +❤➻ +❛ ❣E✐
ˆ
θ
✤:D❝ ❣E✐ ❧➔
!❝ ❧ $♥❣ ❝❤➺❝❤
✈➔ ❣✐→ +KL
b(θ) =
E(ˆ
θ)−θ
✤:D❝ ❣E✐ ❧➔
✤/ ❝❤➺❝❤ ❝0❛ !❝ ❧ $♥❣
✳
✲ OI❝ ❧:D♥❣
ˆ
θ=ˆ
θ(X1, ..., Xn)
✤:D❝ ❣E✐ ❧➔
!❝ ❧ $♥❣ ❦❤-♥❣ ❝❤➺❝❤ 2✐➺♠ ❝➟♥
❝G❛ +❤❛♠
93
θ
♥➳✉
lim
n→+∞E(ˆ
θ) = θ.
✲ ❈❤♦
ˆ
θ1
✈➔
ˆ
θ2
❧➔ ❤❛✐ :I❝ ❧:D♥❣ ❦❤T♥❣ ❝❤➺❝❤ ❝G❛ +❤❛♠ 93
θ
✳ ❚❛ ♥0✐ :I❝ ❧:D♥❣
ˆ
θ1
❤✐➺✉
5✉↔ ❤7♥
:I❝ ❧:D♥❣
ˆ
θ2
♥➳✉
D(ˆ
θ1)< D(ˆ
θ2)
✳
✲ OI❝ ❧:D♥❣
ˆ
θ
❝G❛
θ
❧➔ :I❝ ❧:D♥❣ ❦❤T♥❣ ❝❤➺❝❤ ✈➔ ❝0 ♣❤:V♥❣ 9❛✐
D(ˆ
θ)
❜➨ ♥❤➜+ ✤:D❝
❣E✐ ❧➔
!❝ ❧ $♥❣ 282 ♥❤➜2
✳
❚!♥ ❚❤➜% ❚& ✸✴✹✵