A NEW SYSTEM OF GENERALIZED NONLINEAR RELAXED COCOERCIVE VARIATIONAL INEQUALITIES

KE DING, WEN-YONG YAN, AND NAN-JING HUANG

Received 21 November 2004; Revised 13 April 2005; Accepted 28 June 2005

We introduce and study a new system of generalized nonlinear relaxed cocoercive in- equality problems and construct an iterative algorithm for approximating the solutions of the system of generalized relaxed cocoercive variational inequalities in Hilbert spaces. We prove the existence of the solutions for the system of generalized relaxed cocoercive variational inequality problems and the convergence of iterative sequences generated by the algorithm. We also study the convergence and stability of a new perturbed iterative algorithm for approximating the solution.

Copyright © 2006 Ke Ding et al. This is an open access article distributed under the Cre- ative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Variational inequality problems have various applications in mechanics and physics, opti- mization and control, linear and nonlinear programming, economics and finance, trans- portation equilibrium and engineering science, and so forth. Consequently considerable attention has been devoted to the study of the theory and efficient numerical methods for variational inequality problems (see, e.g., [2–17] and the references therein). In [15], Verma introduced a new system of nonlinear strongly monotone variational inequalities and studied the approximate of this system based on the projection method, and in [16], Verma discussed the approximate solvability of a system of nonlinear relaxed cocoercive variational inequalities in Hilbert spaces. Recently, Kim and Kim [14] introduced and studied a system of nonlinear mixed variational inequalities in Hilbert spaces, and ob- tained some approximate solvability results. In the recent paper [6], Cho et al. introduced and studied a new system of nonlinear variational inequalities in Hilbert spaces. They proved some existence and uniqueness theorems of solutions for the system of nonlinear variational inequalities. They also constructed an iterative algorithm for approximating the solution of the system of nonlinear variational inequalities. Some related works, we refer to [2, 3, 5, 7–10, 12, 13]. Motivated and inspired by these works, in this paper, we introduce and study a new system of generalized nonlinear relaxed cocoercive variational

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 40591, Pages 1–14 DOI 10.1155/JIA/2006/40591

2 Nonlinear relaxed cocoercive variational inequalities

inequality problems and construct an iterative algorithm for approximating the solutions of the system of generalized relaxed cocoercive variational inequalities in Hilbert spaces. We prove the existence of the solutions for the system of generalized relaxed cocoercive variational inequality problems and the convergence of iterative sequences generated by the algorithm. We also study the convergence and stability of a new perturbed iterative algorithm for approximating the solution. The results presented in this paper improve and extend the previously known results in this area.

2. Preliminaries

(cid:3) ≥ 0, ∀z ∈ K1(x),

Let H be a Hilbert space endowed with a norm (cid:2) · (cid:2) and inner product (·, ·), respectively. Let CB(H) be the family of all nonempty subsets of H and K1, K2 be two convex and closed subsets of H. Let g1, g2, m1, m2 : H → H and F, G : H × H → H be mappings. We consider the following system of generalized nonlinear variational inequality problems: find x, y ∈ H such that gi(x) ∈ Ki(x) for i = 1, 2, and (cid:2) F(x, y),z − g1(x) (cid:3)

(2.1)

(cid:2) G(x, y),z − g2(y) ≥ 0, ∀z ∈ K2(y),

where Ki(x) = mi(x) + Ki for i = 1, 2.

When K1 and K2 are both convex cones of H, it is easy to see that problem (2.1) is equivalent to the following system of generalized nonlinear co-complementarity prob- lems: find x, y ∈ H such that gi(x) ∈ Ki(x) for i = 1, 2, and

(cid:3)∗

,

F(x, y) ∈

(cid:2) K1(x) − g1(x)

(2.2)

(cid:3)∗

,

G(x, y) ∈

(cid:2) K2(y) − g2(y)

where Ki(x) = mi(x) + Ki and (Ki(x) − gi(x))∗ is the dual of Ki(x) − gi(x) for i = 1, 2, that is,

(cid:3)∗ =

(2.3)

(cid:5) . (cid:2) Ki(x) − gi(x) (cid:4) u ∈ H | (u,v) ≥ 0, ∀v ∈ Ki(x) − gi(x)

Some examples of problems (2.1) and (2.2) are as follows. (I) If G = 0 and F(x, y) = Tx + Ax for all x, y ∈ X, where T, A : H → H are two map-

pings, then problem (2.2) reduces to finding x ∈ H such that

(cid:3)∗

,

(2.4)

Tx + Ax ∈

(cid:2) K1(x) − g1(x)

which is called the generalized complementarity problem. The problem (2.4) was ex- tended and studied by Jou and Yao [11] in Hilbert spaces, and by Chen et al. [5] in the setting of Banach spaces.

(II) Let T : H × H → H be a mapping. If F(x, y) = ρT(y,x) + x − y, G(x, y) = ηT(x, y) + y − x for all x, y ∈ H, m1 = m2 = 0, K1 = K2 = K, and g1 = g2 = I, where I is an identity

Ke Ding et al.

3

mapping and ρ > 0, η > 0, then problem (2.1) reduces to finding x, y ∈ K such that

(cid:3) (cid:2) ρT(y,x) + x − y,z − x ≥ 0, ∀z ∈ K, (cid:3)

(2.5)

(cid:2) ηT(x, y) + y − x,z − y ≥ 0, ∀z ∈ K,

which is called the system of nonlinear variational inequality problems considered by Verma [16]. The special case of problem (2.5) was studied by Verma [15]. The problem (2.5) was extended and studied by Agarwal et al. [1], Kim and Kim [14], and Cho et al. [6].

(III) If m1 = m2 = 0, and g1 = g2 = I, then problem (2.1) reduces to finding x ∈ K1 and

y ∈ K2 such that

(cid:3) (cid:2) F(x, y),z − x ≥ 0, ∀z ∈ K1, (cid:3)

(2.6)

(cid:2) G(x, y),z − y ≥ 0, ∀z ∈ K2,

which is just the problem considered in [12] with F, G being single-valued mappings.

Definition 2.1. A mapping N : H × H → H is said to be

(i) α-strongly monotone with respect to first argument if there exists some α > 0 such

that

(cid:3)

(2.7)

(cid:2) N(x, ·) − N(y, ·),x − y ≥ α(cid:2)x − y(cid:2)2, ∀(x, y) ∈ H × H;

(ii) ξ-Lipschitz continuous with respect to the first argument, if there exists a constant

ξ > 0 such that

(2.8)

(cid:6) (cid:6)N(x, ·) − N(y, ·) (cid:6) (cid:6) ≤ ξ (cid:6) (cid:6)x − y (cid:6) (cid:6), ∀(x, y) ∈ H × H.

Similarly, we can define the strong monotonicity and Lipschitzian continuity with re-

spect to the second argument of N.

Definition 2.2. A Mapping N : H × H → H is said to be relaxed (a,b)-cocoercive with respect to the first argument if there exists constants a > 0 and b > 0 such that

(cid:3)

(2.9)

(cid:2) N(x, ·) − N(y, ·),x − y ≥ (−a)(cid:2)x − y(cid:2)2 + b(cid:2)x − y(cid:2)2, ∀(x, y) ∈ H × H.

If a = 0, then N is b-strongly monotone. Similarly, we can define the relaxed (a,b)-co- coercivity with respect to the second argument of N.

Lemma 2.3 [4]. If K ⊂ H is a closed convex subset and z ∈ H is a given point, then there exists x ∈ K such that

(2.10)

(x − z, y − x) ≥ 0, ∀y ∈ K

if and only if x = PK z, where PK is the projection of H onto K.

Lemma 2.4 [4]. The projection PK is nonexpansive, that is,

(2.11)

(cid:6) (cid:6) ≤ (cid:2)u − v(cid:2), ∀u,v ∈ H. (cid:6) (cid:6)PK u − PK v

4 Nonlinear relaxed cocoercive variational inequalities

Lemma 2.5 [18]. Let {Kn} be a sequence of closed convex subsets of H such that H(Kn,K) → 0 as n → ∞, where H(·, ·) is the Hausdorff metric, that is, for any A,B ∈ CB(H),

(cid:7) (cid:8)

(2.12)

H(A,B) = max

(cid:2)a − b(cid:2)

.

sup a∈A

(cid:2)a − b(cid:2), sup b∈B

inf b∈B

inf a∈A

Then

(cid:6) (cid:6) −→ 0

(2.13)

(n −→ ∞), ∀v ∈ H.

(cid:6) (cid:6)PKnv − PK v

Lemma 2.6 [4]. If K(u) = m(u) + K for all u ∈ H, then

(2.14)

(cid:2) v − m(u) (cid:3) .

PK(u)v = m(u) + PK

From Lemmas 2.3 and 2.6, we have the following lemma.

Lemma 2.7. If K1,K2 ⊂ H are two closed convex cones, and Ki(·) = m(·) + Ki (i = 1,2), then x, y ∈ H solve problem (2.1) if and only if x, y ∈ H such that

x = x − g1(x) + m1(x) + PK1

(2.15)

(cid:3) , (cid:3) , (cid:2) g1(x) − ρF(x, y) − m1(x) (cid:2) g2(y) − ρG(x, y) − m2(y)

y = y − g2(y) + m2(y) + PK2

n=0

(cid:9)∞

(2.16)

where ρ > 0 is a constant. Lemma 2.8 [17]. Let {μn} be a real sequence of nonnegative numbers and {νn} be a real sequence of numbers in [0,1] with (cid:2) 1 − νn

νn = ∞. If there exists a constant n1 such that (cid:3) μn + νnδn, ∀n ≥ n1,

μn+1 ≤

where δn ≥ 0 for all n ≥ 0, and δn → 0 (n → ∞), then limn→∞ μn = 0.

3. Existence and convergence

In this section, we construct an iterative algorithm to approximate the solution of prob- lem (2.1) and study the convergence of the sequence generated by the algorithm.

(cid:3) (cid:3) (cid:3)

+ m1

xn+1 = xn − g1

+ PK1

Algorithm 3.1. For any given x0, y0 ∈ H, we compute (cid:3) (cid:2) xn (cid:2)

(cid:2) xn (cid:2) (cid:2) xn (cid:2) (cid:3) (cid:3) − ρF (cid:3) − m1 (cid:3) (cid:2) xn (cid:2)

(3.1)

− ρG (cid:3)(cid:3) , (cid:3)(cid:3) .

+ m2

(cid:2) g1 (cid:2) g2 − m2

yn+1 = yn − g2

yn

yn

yn

(cid:2) xn, yn (cid:2) xn, yn

yn

+ PK2

Theorem 3.2. Let gi : H → H be ηi-strongly monotone and ζi-Lipschitz continuous and mi : H → H be γi-Lipschitz continuous (i = 1,2). Let F : H × H → H be l1, l2-Lipschitz con- tinuous with respect to the first, second arguments, respectively, and relaxed (a,b)-cocoercive with respect to the first argument. Let G : H × H → H be n1, n2-Lipschitz continuous with respect to the first, second arguments, respectively, and relaxed (c,d)-cocoercive with respect

Ke Ding et al.

5

to the second argument. If

(cid:10) (cid:10)

1 + ρ2l2

− 2η1 + 2γ1 + − 2ρb + ρn1 < 1,

1 + ζ 2 1

1 + 2ρal2 1

2 (cid:10)

(cid:10)

(3.2)

2

1 + ρ2n2

− 2η2 + 2γ2 + − 2ρd + ρl2 < 1.

1 + ζ 2 2

2 + 2ρcn2 2

then there exist x∗, y∗ ∈ H, which solve problem (2.1). Moreover, the iterative sequences {xn} and {yn} generated by Algorithm 3.1 converge to x∗ and y∗, respectively.

Proof. From (3.1) and Lemma 2.6, we have

(cid:3) (cid:2) (cid:3) (cid:3) (cid:3) (cid:3)(cid:3) (cid:6) (cid:6) = − ρF − m1 (cid:6) (cid:6)xn+1 − xn

xn

(cid:2) xn (cid:2) xn, yn (cid:2) xn (cid:2) xn (cid:3) (cid:2) g1 (cid:3) −

+ m1

(cid:6) (cid:6)xn − g1 (cid:11) xn−1 − g1

+ m1 (cid:2) xn−1

(cid:2) (cid:3) (cid:3) (cid:3)(cid:3)(cid:12)(cid:6) (cid:6)

− ρF (cid:3)

xn−1 (cid:3)

(3.3)

(cid:3)(cid:6) (cid:6) ≤ − g1 − m1

xn

(cid:2) xn−1 (cid:2) xn−1 (cid:2) xn (cid:2) xn−1 (cid:3) − m1 (cid:6) (cid:2) (cid:6)m1 (cid:3)(cid:3)

+

− m1 (cid:6) (cid:6)PK1

+ PK1 (cid:2) xn−1 (cid:2) xn−1, yn−1 (cid:3)(cid:3)(cid:6) (cid:6) + (cid:2) xn (cid:3)

− ρF (cid:3) − ρF (cid:3)(cid:6) (cid:6). (cid:2) xn, yn (cid:2) xn−1, yn−1 − m1(xn−1) (cid:2) + PK1 g1 (cid:6) (cid:2) (cid:6)xn − xn−1 − g1 (cid:3) (cid:2) (cid:2) xn g1 (cid:2) (cid:2) xn−1 g1 − PK1

Since g1 is ζ1-Lipschitz continuous and η1-strongly monotone,

(cid:3) (cid:3)(cid:3)(cid:6) (cid:6) (cid:6)2 (cid:6)2 ≤

(3.4)

.

(cid:2) g1 − g1 − 2η1 (cid:6) (cid:6)xn − xn−1 − (cid:2) xn (cid:2) xn−1 (cid:3)(cid:6) (cid:6)xn − xn−1 (cid:2) 1 + ζ 2 1

From the γ1-Lipschitzian continuity of m1, we have

(cid:3)

(3.5)

(cid:6) (cid:6). (cid:6) (cid:6)m1 (cid:3)(cid:6) (cid:6) ≤ γ1 − m1 (cid:2) xn (cid:2) xn−1 (cid:6) (cid:6)xn − xn−1

Lemma 2.4 implies that PK1 is nonexpansive and it follows from the strong monotonicity of g1 that

(cid:3)(cid:3) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3)(cid:3)(cid:6) (cid:6) (cid:2) g1 (cid:2) xn (cid:6) (cid:6)PK1 − m1 (cid:3) − PK1 (cid:3)(cid:3) − ρF (cid:3) − m1 (cid:3) (cid:3)(cid:3)(cid:6) (cid:6) ≤ − ρF (cid:2) xn (cid:6) (cid:2) (cid:6) g1 − m1 (cid:2) xn (cid:2) xn−1 (cid:2) xn−1 − m1 (cid:2) − (cid:3)(cid:3)(cid:6) (cid:3) ≤ (cid:6) + − g1 (cid:2) g1 (cid:2) g1 (cid:6) (cid:6)m1 (cid:2) xn−1, yn−1 (cid:2) xn−1, yn−1 (cid:3)(cid:6) (cid:2) (cid:6) xn−1

xn−1 (cid:3)

(cid:3)

+

F

− F (cid:2) xn−1 (cid:2) xn−1 (cid:2) xn (cid:3)(cid:3)(cid:6) (cid:6) + ρ − F − ρF (cid:3) (cid:2) − ρF xn (cid:6) (cid:2) (cid:6)xn − xn−1 − g1 (cid:6) (cid:6)xn − xn−1 − ρ (cid:2) xn, yn (cid:2) xn, yn (cid:3) (cid:2) xn (cid:2) (cid:2) xn, yn (cid:2) xn−1, yn − m1 (cid:6) (cid:2) (cid:6)F xn−1, yn (cid:2) xn−1, yn−1 (cid:3)(cid:6) (cid:6). (3.6)

6 Nonlinear relaxed cocoercive variational inequalities

Since F is relaxed (a,b)-cocoercive and l1-Lipschitz continuous with respect to the first argument,

(cid:3) (cid:2) (cid:3)(cid:3)(cid:6) (cid:6)2

F

(cid:2) xn−1, yn (cid:3) (cid:3)(cid:6) (cid:6)2 = (cid:2) xn−1, yn (cid:2) xn, yn (cid:6) (cid:6)2 + ρ2 (cid:2) (cid:3)(cid:3)(cid:3)

(3.7)

− F (cid:3) (cid:3)(cid:6) (cid:6)2 ≤

F (cid:6) (cid:6)F

(cid:6) (cid:6)xn − xn−1 − ρ (cid:6) (cid:6)xn − xn−1 (cid:2) xn − xn−1,ρ (cid:6) (cid:6)2 + ρ2 (cid:3) (cid:6) (cid:6)2 − F − 2 (cid:6) (cid:6)xn − xn−1 (cid:6) (cid:2) (cid:6)F xn, yn − F (cid:2) xn−1, yn (cid:2) xn−1, yn (cid:6) (cid:6)xn − xn−1

=

+ 2ρa (cid:2) 1 + l2

1ρ2 + 2ρal2 1

− F (cid:3)(cid:6) (cid:6)2 − 2ρb (cid:6) (cid:6)2. − 2ρb − F (cid:6) (cid:2) (cid:6)F xn, yn (cid:3) (cid:2) xn, yn (cid:2) xn, yn (cid:2) xn−1, yn (cid:3)(cid:6) (cid:6)xn − xn−1

Since F is l2-Lipschitz continuous with respect to the second argument,

(cid:3)

(3.8)

(cid:6) (cid:6)F (cid:6) (cid:6). − F (cid:3)(cid:6) (cid:6) ≤ l2 (cid:2) xn−1, yn (cid:2) xn−1, yn−1 (cid:6) (cid:6)yn − yn−1

(cid:6) (cid:6)

(cid:10) (cid:10)

It follows from (3.3)–(3.8) that (cid:6) (cid:6)xn+1 − xn (cid:13)

2

1 + ρ2l2

− 2ρb − 2η1 + 2γ1 + (cid:6) (cid:6) + ρl2 (cid:14)(cid:6) (cid:6)xn − xn−1 (cid:6) (cid:6)yn − yn−1

1 + ζ 2 1

1 + 2ρal2 1

(cid:6) (cid:6). (3.9)

(cid:6) (cid:6)

(cid:10) ≤

Similarly, we have (cid:6) (cid:6)yn+1 − yn (cid:10) (cid:13) 2

1 + ρ2n2

− 2ρd − 2η2 + 2γ2 + (cid:6) (cid:6) + ρn1 (cid:14)(cid:6) (cid:6)yn − yn−1 (cid:6) (cid:6)xn − xn−1

1 + ζ 2 2

2 + 2ρcn2 2

(cid:6) (cid:6). (3.10)

(cid:6) (cid:6)

Now (3.9) and (3.10) imply (cid:6) (cid:6)yn+1 − yn

1 + 2ρal2 1

(cid:6) (cid:6) + (cid:10) (cid:10) (cid:6) (cid:6)xn+1 − xn (cid:13) (cid:6) (cid:6) ≤ − 2η1 + 2γ1 + − 2ρb + ρn1

1 + ζ 2 1 (cid:10)

1 + ρ2l2 (cid:10)

(3.11)

2 (cid:13)

(cid:14)(cid:6) (cid:6)xn − xn−1 (cid:14)

+

2

,

− 2ρd + ρl2 (cid:6) (cid:3) (cid:6) ,

1 + ζ 2 2 (cid:6) (cid:6)yn − yn−1

2 + 2ρcn2 1 + ρ2n2 2 (cid:6) (cid:6) (cid:6)yn − yn−1 (cid:6) +

− 2η2 + 2γ2 + (cid:6) (cid:2)(cid:6) (cid:6) ≤ ω (cid:6)xn − xn−1

where

(cid:15) (cid:10) (cid:10)

2

1 + ρ2l2

ω = max

− 2η1 + 2γ1 +

1 + ζ 2 1

1 + 2ρal2 1

(3.12)

− 2ρb + ρn1, (cid:16) (cid:10) (cid:10)

2

1 + ρ2n2

.

− 2η2 + 2γ2 + − 2ρd + ρl2

1 + ζ 2 2

2 + 2ρcn2 2

Ke Ding et al.

7

It follows from (3.2) that ω < 1. Thus (3.11) implies that {xn} and {yn} are both Cauchy sequences in H, and {xn} converges to x∗ ∈ H, {yn} converges to y∗ ∈ H. Since m1, m2, g1, g2, PK1, PK2, F, G are all continuous, we have

(cid:3) (cid:3) (cid:3) (cid:3)

x∗ = x∗ − g1

+ m1

(cid:3)(cid:3) , (cid:3)(cid:3) (cid:3) (cid:2) x∗ (cid:2) (cid:2) x∗ (cid:2) (cid:2) g1(x∗ (cid:2) (cid:2) − ρF (cid:3)

+ PK (cid:3)

− m1 (cid:3) (cid:2) x∗ (cid:2)

(3.13)

,

y∗

y∗

y∗

− ρG (cid:2) x∗, y∗ (cid:2) x∗, y∗

y ∗

y∗ = y∗ − g2

g2

− m2

+ m2

+ PK

(cid:2)

The result follows then from Lemma 2.7. This completes the proof.

Remark 3.3. Let ρ > 0 be a number satisfying the conditions.

(cid:2) 1 − e1 (cid:3) n1 (cid:17) (cid:17) (cid:17) (cid:17) (cid:17) (cid:17) (cid:17)

(cid:13)(cid:2) (cid:2) (cid:3) (cid:3)2 − (cid:17)ρ − b − al2 − 1 − n2 l2 1 1 (cid:3)2 − 1 + (cid:14) / (cid:2) 1 − e1 (cid:2) 1 − e1 (cid:3) n1

l2 1

− n2 1

,

<

ρn1 < 1 − e1, n1 < l1,

b − al2 1 − n2 l2 1 1

(cid:3) (cid:2) 1 − e2

l2

(cid:17) (cid:17) (cid:17) (cid:17) (cid:17) (cid:17) (cid:17)

(cid:14) (cid:13)(cid:2) (cid:3) (cid:3)2 − (cid:17)ρ − d − cn2 − 2 − l2 n2 2 2 (cid:3)2 − 1 +

/

(cid:2) 1 − e2 (cid:2) 1 − e2 (cid:3) l2 (cid:2) n2 2 − l2 2

,

<

ρl2 < 1 − e2, l2 < n2,

d − cn2 2 − l2 n2 2 2

(3.14)

(cid:10) (cid:10)

where e1 = 2

− 2η1 + 2γ1 and e2 = 2 − 2η2 + 2γ2. Then (3.2) holds.

1 + ζ 2 1

1 + ζ 2 2

4. Perturbed algorithm and stability

In this section, we construct a new perturbed iterative algorithm for solving problem (2.1) and prove the convergence and stability of the iterative sequence generated by the algorithm.

Definition 4.1. Let T be a self-map of H, x0 ∈ H and let xn+1 = f (T,xn) define an iteration procedure which yields a sequence of points {xn}∞ n=0 in H. Suppose that {x ∈ H : Tx = x} (cid:11)= ∅ and {xn}∞ n=0 converge to a fixed point x∗ of T. Let {un} ⊂ H and let (cid:2)n = (cid:2)un+1 − f (T,un)(cid:2). If lim (cid:2)n = 0 implies that limun = x∗, then the iteration procedure defined by xn+1 = f (T,xn) is said to be T-stable or stable with respect to T. Some results for the stability of various iterative processes, we refer to [1, 10] and the references therein.

Let {K 1 n

} and {K 2 } be two sequences of closed convex subsets of H such that n n ,K) → 0, when n → ∞. Now we consider the following perturbed n ,K) → 0, H(K 2

H(K 1 algorithm for solving problem (2.1).

8 Nonlinear relaxed cocoercive variational inequalities

(cid:3) (cid:3) (cid:3) (cid:3) (cid:3)(cid:3)(cid:3) − ρF − m1 (cid:2) xn, yn (cid:2) xn

+ tnen,

Algorithm 4.2. For any given x0, y0 ∈ H, we compute (cid:2) xn (cid:3)

(cid:2) xn − g1(xn (cid:3) (cid:3) xn + tn (cid:2) (cid:2) 1−tn (cid:3) (cid:2) xn (cid:3)

+ m1 (cid:2)

(cid:2) g1 (cid:2) (cid:2) (cid:3) (cid:2) (cid:3)(cid:3)(cid:3) − ρG

+ m2

+ PK 1 n (cid:2) g2

− m2

xn+1 = (cid:2) 1−tn

yn+1 =

yn + tn

yn − g2

yn

yn

+ PK 2

yn

(cid:2) xn, yn

yn

n

+ tn jn, (4.1)

for all n = 0,1,2,..., where {en} and { jn} are two sequences of the elements of H, and the sequence {tn} satisfies the following conditions

∞(cid:18)

(4.2)

0 ≤ tn ≤ 1, ∀n ≥ 0,

tn = ∞.

n=0

Let {un} and {vn} be any sequences in H and define (cid:2)n = (cid:2)1

n + (cid:2)2

n by

(cid:4)(cid:2) (cid:11) (cid:3) (cid:3) = (cid:6) (cid:6)un+1 −

1 − tn

(cid:3) un + tn (cid:2)1 n

+ m1 (cid:3)

(cid:3) (cid:3)(cid:3)(cid:12) (cid:5)(cid:6) (cid:6)

+ m1

(cid:2) un

+ tnen

+ PK1

(4.3)

(cid:4)(cid:2) (cid:11) (cid:2) un (cid:2) un (cid:3) (cid:2) un (cid:2) un,vn (cid:3) = (cid:6) (cid:6)vn+1 −

1 − tn

(cid:3) vn + tn (cid:2)2 n

+ m2 (cid:3)

(cid:3) (cid:3)(cid:3)(cid:12) − ρG (cid:5)(cid:6) (cid:6).

vn − g2 (cid:2) g2

+ m2

un − g1 (cid:2) g1 (cid:2) vn (cid:2) vn

− ρF (cid:2) vn (cid:2) un,vn (cid:2) vn

+ tn jn

+ PK2

(cid:2) 1 − e1 (cid:3) n1 (cid:17) (cid:17) (cid:17) (cid:17)

(cid:14) (cid:13)(cid:2) (cid:3) (cid:3)2 −

Theorem 4.3. Let gi : X → X be ηi-strongly monotone and ζi-Lipschitz continuous, and mi : X → X be τi-Lipschitz continuous for i = 1,2. Let F : X × X → X be l1, l2-Lipschitz continuous with respect to the first and second arguments, respectively, and relaxed (a,b)- cocoercive with respect to the first argument. Let G : X × X → X be n1, n2-Lipschitz continu- ous with respect to the first and second arguments, respectively, and relaxed (c,d)-cocoercive with respect to the second argument. Suppose H(Kn,K) → 0 (n → ∞) and (cid:17) (cid:17) (cid:17)ρ − b − al2 − (cid:17) 1 − n2 l2 1 1 (cid:3)2 − 1 +

/

(cid:2) 1 − e1 (cid:2) 1 − e1 (cid:3) n1 − n2 1 (cid:2) l2 1

,

<

ρn1 < 1 − e1, n1 < l1,

b − al2 1 − n2 l2 1 1

(4.4)

(cid:2) 1 − e2 (cid:3) l2 (cid:17) (cid:17) (cid:17) (cid:17) (cid:17) (cid:17) (cid:17)

(cid:13)(cid:2) (cid:3) (cid:3)2 − (cid:17)ρ − d − cn2 − 2 − l2 n2 2 2 (cid:3)2 − 1 + (cid:14) / (cid:2) 1 − e2 (cid:2) 1 − e2 (cid:3) l2 (cid:2) n2 2 − l2 2

,

<

ρl2 < 1 − e2, l2 < n2,

d − cn2 2 − l2 n2 2 2

(cid:10) − 2ηi + 2γi for i = 1,2. If limn→∞ (cid:2)en(cid:2) = 0 and limn→∞ (cid:2) jn(cid:2) = 0, then

1 + ζ 2 where ei = 2 i we have the following conclusions.

(I) The iterative sequences generated by Algorithm 4.2 converge to the unique solution of

(2.1).

(II) Moreover, if 0 < t ≤ tn, then limun = x∗, limvn = y∗ if and only if lim((cid:2)1

n + (cid:2)2

n) = 0,

where (cid:2)1

n and (cid:2)2

n are defined by (4.3).

Ke Ding et al.

9

Proof. By Theorem 3.2, problem (2.1) admits a solution (x∗, y∗). It is easy to prove that (x∗, y∗) is the unique solution of (4.1). From Lemma 2.7, we have (cid:3)

(cid:3) (cid:3) (cid:3)

x∗ =

(cid:3)(cid:3)(cid:3) , (cid:3)(cid:3)(cid:3) (cid:3) x∗ + tn (cid:3) (cid:2) x∗ − g1 (cid:2) (cid:2) x∗ (cid:2) (cid:2) x∗ (cid:2)

+ m1 (cid:3)

(cid:2) x∗ (cid:2) − ρF (cid:3) − m1 (cid:3) (cid:2) x∗ (cid:2)

+ PK1 (cid:3)

y∗

y∗

y∗

− ρG (cid:2) x∗, y∗ (cid:2) x∗, y∗

y ∗

y∗ =

y∗ − g2

+ m2

(cid:2) g1 (cid:2) g2 − m2 (cid:2) 1 − tn (cid:2) 1 − tn

y∗ + tn

+ PK2

, (4.5)

(cid:6) (cid:6)

n

(cid:3) (cid:3) (cid:11) (cid:3) (cid:3)(cid:3)(cid:12) (cid:3) = (cid:2) xn

+PK 1 (cid:3)

+m1 (cid:3)

−m1 (cid:3) −ρF (cid:3)

+tnen (cid:3)(cid:3)(cid:12)(cid:6) (cid:6)

− (cid:2) xn, yn (cid:2) x∗, y∗

+PK1 (cid:3)

+m1 (cid:3)

(cid:6) (cid:6)

Since PK is nonexpansive and it follows from (4.1) and (4.5) that (cid:6) (cid:6)xn+1 − x∗ (cid:6) (cid:2) (cid:6) 1−tn (cid:2) 1−tn (cid:3)(cid:6) (cid:6)

≤ (cid:6) (cid:6)en −ρF (cid:6) (cid:6)m1(x)−m1 (cid:3) (cid:2) xn (cid:2) x∗ (cid:3)(cid:6) (cid:6)+tn (cid:3) (cid:2) xn (cid:2) x∗ (cid:2) xn −x∗ (cid:3) (cid:2) xn (cid:2) x∗ (cid:2) xn (cid:3)(cid:3) (cid:2) x∗ (cid:3)(cid:6) (cid:6)+tn (cid:3)(cid:3)(cid:6) (cid:6) (cid:2) x∗, y∗ (cid:3) xn+tn (cid:3) x∗ −tn (cid:2) xn −x∗ (cid:3) (cid:2) (cid:2) g1

xn

−PK1 (cid:3) −m1 (cid:3) (cid:6) (cid:6) (cid:2) 1−tn (cid:6) (cid:6)PK 1 n (cid:3)(cid:6) (cid:6) ≤ (cid:6) (cid:6)en −ρF (cid:6) (cid:6)m1(x)−m1 (cid:3) (cid:2) g1 (cid:2) g1 (cid:2) x∗ (cid:2) x∗ (cid:3)(cid:6) (cid:6)+tn (cid:3)

xn −g1 (cid:11) x∗ −g1 (cid:6) (cid:3)(cid:6) (cid:6) (cid:6)+tn (cid:2) xn, yn (cid:6) (cid:2) (cid:6) xn −x∗ (cid:3)

+g1 (cid:2) xn (cid:2) xn (cid:3)(cid:3)

−m1 (cid:2) x∗ (cid:2) x∗ (cid:3)(cid:6) (cid:6)+tn (cid:3)(cid:3)(cid:6) (cid:6)

xn

+tn

n

n

(cid:2) −m1 (cid:3) −ρF (cid:3) −m1 (cid:3) −PK 1 (cid:3)(cid:3) −ρF (cid:3) (cid:3)(cid:3)(cid:6) (cid:6)

x∗

(cid:2) x∗, y∗ (cid:2) x∗, y∗ −m1 (cid:2) x∗ (cid:2) x∗ (cid:2) x∗ (cid:2) xn −x∗ (cid:3) (cid:2) (cid:2) g1 (cid:2) g1 −g1 (cid:2) g1 (cid:2) g1 −m1 (cid:3) (cid:6) (cid:6)

+tn (cid:2) 1−tn (cid:6) (cid:6)PK 1 (cid:6) (cid:6)PK 1 n (cid:3)(cid:6) (cid:6)

≤ −ρF (cid:6) (cid:6)m1(x)−m1

+g1

−m1 (cid:3)(cid:6) (cid:2) (cid:6)+tn x∗ (cid:6) (cid:6)en −PK1 (cid:2) (cid:3) x∗ (cid:3) (cid:3)(cid:3)(cid:6) (cid:3)(cid:6) (cid:6)

+ tn

−g1 (cid:2) xn (cid:6) + tn −g1 (cid:2) g1 (cid:2) x∗ (cid:2) x∗ (cid:2) x∗ (cid:3)(cid:6) (cid:6)+tn (cid:2) x∗ (cid:3)

+g1 (cid:2) xn (cid:2) x∗ (cid:2) xn (cid:6) (cid:6)m1 (cid:3)(cid:3)(cid:6)

− g1 (cid:3) (cid:3)(cid:6) (cid:6) (cid:2) xn −x∗ (cid:2) g1 (cid:2) F − F (cid:3) (cid:2) x∗, y∗ (cid:3)

x∗

−ρF (cid:3)(cid:6) (cid:6)+tn (cid:2) xn, yn (cid:2) x∗, y∗ (cid:6) (cid:2) (cid:6) xn −x∗ (cid:2) x∗ (cid:2) x∗, yn (cid:2) x∗ −ρF (cid:3)(cid:6) (cid:6)+tn (cid:3) (cid:2) xn (cid:2) xn, yn (cid:2) x∗, y∗ −ρF − F (cid:2) x∗, y∗ (cid:2) x∗ −ρF − m1 (cid:6) (cid:2) (cid:6)F (cid:6) + ρtn x∗, yn (cid:3) (cid:2) (cid:2) (cid:3)(cid:3) x∗ g1 −m1 −m1

+tn (cid:2) 1−tn (cid:6) (cid:6)xn − x∗ − (cid:6) (cid:6)xn − x∗ − ρ + tn (cid:6) (cid:3) (cid:2) (cid:2) (cid:6)PK 1 g1

+tn

n

−PK1 (cid:3)(cid:3)(cid:6) (cid:6). (4.6)

Since F is l2-Lipschitz continuous with respect to the second argument, (cid:3)

(4.7)

(cid:6) (cid:6)F (cid:2) x∗, y∗ (cid:6) (cid:6). − F (cid:3)(cid:6) (cid:6) ≤ l2 (cid:2) x∗, yn (cid:6) (cid:6)yn − y∗

From the strong monotonicity and Lipschitzian continuity of g1, we obtain

(cid:3) (cid:3)(cid:3)(cid:6) (cid:6) (cid:6)2 (cid:6)2 ≤

(4.8)

(cid:2) x∗

.

(cid:2) g1 − g1 − 2η1 (cid:6) (cid:6)xn − x∗ − (cid:2) xn (cid:3)(cid:6) (cid:6)xn − x∗ (cid:2) 1 + ζ 2 1

(cid:3)

(4.9)

The Lipschitzian continuity of m1 implies (cid:2) x∗

(cid:6) (cid:6). (cid:6) (cid:6)m1 − m1 (cid:3)(cid:6) (cid:6) ≤ γ1 (cid:2) xn (cid:6) (cid:6)xn − x∗

10 Nonlinear relaxed cocoercive variational inequalities

Since F is relaxed (a,b)-cocoercive and l1-Lipschitz continuous with respect to the first argument,

(cid:10) (cid:3) (cid:3)(cid:3)(cid:6) (cid:6) ≤

(4.10)

(cid:2) F − F

1 + ρ2l2

1 + 2ρal2 1

− 2ρb (cid:6) (cid:6). (cid:6) (cid:6)xn − x∗ − ρ (cid:2) xn, yn (cid:2) x∗, yn (cid:6) (cid:6)xn − x∗

It follows from (4.6)–(4.10) that

1 + 2ρal2 1

(cid:10) (cid:10) (cid:6) (cid:6) (cid:6) (cid:6) ≤ (cid:6) (cid:6)xn+1 − x∗ (cid:13) 2tn − 2ρb + 1 − tn (cid:14)(cid:6) (cid:6)xn − x∗

1 + ρ2l2 (cid:6) (cid:6),

1 + ζ 2 1 (cid:6) (cid:6)yn − y∗

− 2η1 + 2tnγ1 + tn (cid:6) (cid:6)en (cid:6) (cid:6) + tnbn + tn

+ tnρl2

(4.11)

where

(cid:3) (cid:3) (cid:3)(cid:3) (cid:3) (cid:3) (cid:2) x∗ (cid:2) x∗, y∗ − ρF (cid:2) x∗ (cid:2) x∗ (cid:2) x∗, y∗ − ρF (cid:2) x∗ (cid:2) g1 − m1 (cid:2) g1 − m1

bn =

n

n ,K1) → 0 and Lemma 2.5, we know that bn → 0.

(cid:6) (cid:6)PK 1 − PK1 (cid:3)(cid:3)(cid:6) (cid:6). (4.12)

From the fact of H(K 1 Similarly, we have

2 + 2ρcn2 2

(cid:10) (cid:10) (cid:6) (cid:6) (cid:6) (cid:6) ≤ (cid:6) (cid:6)yn+1 − y∗ (cid:13) 2tn − 2ρd + 1 − tn (cid:14)(cid:6) (cid:6)yn − y∗

1 + ρ2n2 (cid:6) (cid:6),

1 + ζ 2 2 (cid:6) (cid:6)xn − x∗

− 2η2 + 2tnγ2 + tn (cid:6) (cid:6) jn (cid:6) (cid:6) + tncn + tn

+ tnρn1

(4.13)

where

(cid:2) (cid:3) (cid:3) (cid:2) (cid:3)(cid:3) (cid:2) (cid:2) (cid:3) (cid:3) (cid:2)

y∗

(cid:2) x∗, y∗ − ρG

y∗

y∗

− ρF (cid:2) x∗, y∗

y∗

(cid:2) g2 − m2

g2

− m2 (cid:6) (cid:6)PK 2

cn =

n

− PK2 (cid:3)(cid:3)(cid:6) (cid:6), (4.14)

and cn → 0. Now (4.11) and (4.13) imply

(cid:6) (cid:6) (cid:6) (cid:6)yn+1 − y∗ (cid:6) (cid:6) + (cid:10) (cid:10) (cid:6) (cid:6)xn+1 − x∗ (cid:13) (cid:6) (cid:6) ≤

2tn

1 + 2ρal2 1

− 2η1 + 2tnγ1 + 1 − tn + tn − 2ρb + tnρn1

1 + ζ 2 1 (cid:10)

1 + ρ2l2 (cid:10)

(cid:6) (cid:6)

+

1+ ρ2n2

(cid:13) 2tn − 2ρd + tnρl2 (cid:14)(cid:6) (cid:6)xn − x∗ (cid:14)(cid:6) (cid:6)yn − y∗

1+ ζ 2 2

2 + 2ρcn2 2

(cid:6) (cid:6). − 2η2+ 2tnγ2+ 1 − tn+ tn (cid:6) (cid:6) jn (cid:6) (cid:6) + tn (cid:6) (cid:6)en

+ tncn + tnbn + tn

(4.15)

Ke Ding et al.

11

Let

(cid:10) (cid:10)

1 + ρ2l2

− 2η1 + 2γ1 + − 2ρb + ρn1,

1 + ζ 2 1

1 + 2ρal2 1

(4.16)

h1 = 2 (cid:10)

(cid:10)

1 + ρ2n2

h2 = 2

− 2η2 + 2γ2 + − 2ρd + ρl3.

1 + ζ 2 2

2 + 2ρcn2 2

From (4.4), it is easy to see that 0 ≤ h1 < 1 and 0 ≤ h2 < 1. Let h = max{h1,h2}. Then h < 1 and so (4.15) reduces to

(cid:6) (cid:6) (cid:6) (cid:6) + (cid:3) (cid:3) (cid:6) (cid:6)yn+1 − y∗ (cid:3)(cid:2)(cid:6) (cid:6) (cid:6) (cid:6) (cid:6) ≤ (cid:6) (cid:6) + (cid:6)xn − x∗ (cid:2) bn + cn + (cid:6) (cid:6)en (cid:6) (cid:6) jn

+ tn

(4.17)

(cid:3) (cid:3)(cid:2)(cid:6) (cid:6) (cid:6) = (cid:6) (cid:6) + (cid:6) (cid:6) + (cid:6) (cid:6)xn+1 − x∗ (cid:2) 1 − (1 − h)tn (cid:2) 1 − (1 − h)tn (cid:6)xn − x∗ (cid:6) (cid:6)yn − y∗ (cid:6) (cid:6)yn − y∗

+ (1 − h)tnδn,

where

(cid:6) (cid:6) (cid:6) (cid:6) + (cid:6) (cid:6) jn

(4.18)

.

δn = bn + cn +

(cid:6) (cid:6)en 1 − h

From (4.12), (4.14) and Lemma 2.5, we have

(cid:6) (cid:6) (cid:6) (cid:6) + (cid:6) (cid:6) jn −→ 0

(4.19)

(n −→ ∞).

bn −→ 0,

cn −→ 0,

δn = bn + cn +

(cid:6) (cid:6)en 1 − h

It follows from (4.2), (4.17), (4.19) and Lemma 2.8 that

(4.20)

(n −→ ∞).

xn −→ x∗,

yn −→ y∗

This completes the proof of Conclusion I.

Next we prove Conclusion II. By using (4.1), we obtain

(cid:6) (cid:6)

(cid:6) (cid:6)un+1 − x∗ (cid:4)(cid:2) (cid:11) (cid:3) (cid:3) (cid:3) (cid:3) (cid:3)(cid:3)(cid:12) (cid:5)(cid:6) (cid:6) ≤ (cid:2) un (cid:2) un (cid:2) un (cid:2) un (cid:2) g1 (cid:3) (cid:2) un,vn (cid:3) (cid:3)(cid:3)(cid:12)

+tnen (cid:5)

(cid:6) (cid:6)un+1 − (cid:6) (cid:4)(cid:2) (cid:6) (cid:6) (cid:6)

+tnen

un −g1 (cid:3) (cid:2) un (cid:3)

+m1 (cid:3) (cid:2) un (cid:3)

+PK1 (cid:2) (cid:2) un g1 (cid:3)

−ρF (cid:2) un,vn (cid:3)

+m1 (cid:2) un (cid:3)(cid:3)(cid:12)

≤ −ρF

+m1

+PK1 (cid:2) g1

+m1

+ (cid:6) (cid:2) (cid:6) 1−tn

1−tn (cid:3) un+tn

(cid:3) un+tn (cid:11) un −g1 (cid:2) un

1−tn (cid:3) un+tn (cid:11) un −g1

+m1 (cid:2) un

(cid:2) un

+m1 (cid:2) un

−ρF (cid:2) un,vn

+PK1

−x∗ (cid:6) (cid:6)+(cid:2)1 +tnen −x∗ n. (4.21)

12 Nonlinear relaxed cocoercive variational inequalities

(cid:4)(cid:2) (cid:3) (cid:3) (cid:11) (cid:3) (cid:3) (cid:5) (cid:3)(cid:3)(cid:12)

As the proof of inequality (4.11), we have (cid:6) (cid:6)

(cid:6) (cid:6) −ρF −x∗

+m1

(cid:2) g1

+m1

(cid:2) un (cid:2) un

un −g1

(cid:2) un (cid:2) un,vn (cid:3) un+tn (cid:10)

+PK1 (cid:10)

1−tn (cid:13)

+tnen (cid:6) (cid:6)

2tn

1 + 2ρal2 1

− 2ρb + 1 − tn (cid:2) un (cid:14)(cid:6) (cid:6)un − x∗

1 + ρ2l2 (cid:6) (cid:6),

1 + ζ 2 1 (cid:6) (cid:6)vn − y∗

− 2η1 + 2tnγ1 + tn (cid:6) (cid:6) (cid:6)en (cid:6) + tnbn + tn

+ tnρl2

(4.22)

where bn is defined by (4.12). From (4.21) and (4.22), we have

1 + 2ρal2 1

(cid:10) (cid:10) (cid:6) (cid:6) (cid:6) (cid:6) ≤ (cid:6) (cid:6)un+1 − x∗ (cid:13) 2tn − 2ρb + 1 − tn (cid:14)(cid:6) (cid:6)un − x∗

1 + ζ 2 1 (cid:6) (cid:6)vn − y∗

− 2η1 + 2tnγ1 + tn (cid:6) (cid:6)en (cid:6) (cid:6) + tnbn + tn

+ tnρl2

1 + ρ2l2 (cid:6) (cid:6) + (cid:2)1 n.

(4.23)

Similarly, we have

2 + 2ρcn2 2

(cid:10) (cid:10) (cid:6) (cid:6) (cid:6) (cid:6) ≤ (cid:6) (cid:6)vn+1 − y∗ (cid:13) 2tn − 2ρd + 1 − tn (cid:14)(cid:6) (cid:6)vn − y∗

1 + ζ 2 2 (cid:6) (cid:6)un − x∗

− 2η2 + 2tnγ2 + tn (cid:6) (cid:6) jn (cid:6) (cid:6) + tncn + tn

+ tnρn1

1 + ρ2n2 (cid:6) (cid:6) + (cid:2)2 n,

(4.24)

n + (cid:2)2 n

(cid:6) (cid:6) (cid:6) (cid:6) + (cid:3) (cid:6) (cid:6) ≤ (cid:6)un − x∗ (cid:3) (cid:3)(cid:2)(cid:6) (cid:12) (cid:6) (cid:6) ≤ (cid:6) (cid:6) + (cid:6) (cid:6) + (cid:3) /t

+ tn(bn + cn + (cid:2)en(cid:2) + (cid:2) jn(cid:2)) + (cid:2)1 (cid:6) (cid:6)en

(cid:11) bn + cn + (cid:6)un − x∗ (cid:6) (cid:6) jn

+ tn

(cid:2) n + (cid:2)2 (cid:2)1 n (cid:3) (cid:3)(cid:2)(cid:6) (cid:6) (cid:6) = (cid:6) (cid:6) + (cid:6) (cid:6) + (cid:6) (cid:6) +

where cn is defined by (4.14). As the proof of inequality (4.17), and since 0 < t ≤ tn, (4.23) and (4.24) yield (cid:6) (cid:6) (cid:6)vn+1 − y∗ (cid:6)un+1 − x∗ (cid:3)(cid:2)(cid:6) (cid:2) 1 − (1 − h)tn (cid:2) 1 − (1 − h)tn (cid:2) 1 − (1 − h)tn

(cid:6) (cid:6)vn − y∗ (cid:6) (cid:6)vn − y∗ (cid:6) (cid:6)vn − y∗

+ (1 − h)tnδn,

(cid:6)un − x∗

(4.25)

where

(cid:6) (cid:6) + (cid:6) (cid:6) + (cid:3) /t (cid:6) (cid:6)en (cid:2) n + (cid:2)2 (cid:2)1 n

(4.26)

.

δn = bn + cn +

(cid:6) (cid:6) jn 1 − h

(cid:9) = 0, then from bn → 0, cn → 0, (cid:2)en(cid:2) → 0 and (cid:2) jn(cid:2) → 0, we have tn = ∞, (4.25) and Lemma 2.8, we

Suppose that lim (cid:2)1 n + (cid:2)2 n δn → 0 (as n → ∞). Then from the fact of tn → 0, have limun = x∗ and limvn = y∗.

Ke Ding et al.

13

Conversely, suppose that lim un = x∗ and limvn = y∗. Then we have

(cid:4)(cid:2) (cid:3) (cid:3) = (cid:6) (cid:6)un+1 −

1 − tn

n + (cid:2)2 (cid:2)1 n

(cid:3) un + tn (cid:2) un (cid:3) (cid:3)(cid:3)(cid:12)

+ m1 (cid:3)

(cid:5)(cid:6) (cid:6) − ρF

+ m1

(cid:2) un

+ tnen

(cid:4)(cid:2)

+ PK1 (cid:11)

(cid:2) un (cid:2) un,vn (cid:3) (cid:3)

+

(cid:11) un − g1 (cid:2) g1(un (cid:2) vn (cid:6) (cid:6)vn+1 −

1 − tn

(cid:3) vn + tn (cid:3)

+ m2 (cid:3)

(cid:3)(cid:3)(cid:12) (cid:5)(cid:6) (cid:6) (cid:2) vn

vn − g2 (cid:2) g2(vn

+ tn jn

− ρG (cid:3)

+ m2 (cid:3)

(cid:6) (cid:6) ≤ (cid:6) (cid:6) + (cid:6) (cid:6)un+1 − x∗ (cid:2) 1 − tn (cid:3) un + tn

+ m1 (cid:3)

(cid:3) (cid:3)(cid:3)(cid:12) − ρF

+ m1

(cid:2) vn (cid:2) un,vn (cid:2) un (cid:2) un,vn (cid:2) un

(cid:6) (cid:6) + (cid:3) (cid:3) (cid:6) (cid:6)

+

(cid:2) 1 − tn (cid:3) vn + tn

+ m2 (cid:3)

(cid:3)(cid:3)(cid:12) (cid:3)

vn − g2 (cid:2)

(cid:6) (cid:6)

+ tn jn − y∗ (cid:6) (cid:6)

≤ (cid:6) (cid:6) +

+ PK2 (cid:11) (cid:2) un − g1 un (cid:2) (cid:2) + PK1 un g1 (cid:6) (cid:6) (cid:6) (cid:6)vn+1 − y∗ (cid:2) vn (cid:2) (cid:2) − ρG + m2 un,vn vn (cid:6) (cid:6) (cid:6) (cid:6)un − x∗ (cid:6) + tnρn1 (cid:6)vn − y∗

(cid:6) (cid:6)un+1 − x∗ (cid:19) (cid:20)

+ tnen − x∗ (cid:2) (cid:11) vn (cid:2) + PK2 g2 vn (cid:6) (cid:6) (cid:6) + tnρl2 (cid:6)vn+1 − y∗ (cid:10)

(cid:10) (cid:6) (cid:6)

+

1 + ρ2l2

2tn

− 2η1 + 2tnγ1 + tn − 2ρb + 1 − tn

1 + ζ 2 1

1 + 2ρal2 1

(cid:19) (cid:6) (cid:6)un − x∗ (cid:20) (cid:10) (cid:10) (cid:6) (cid:6)

+

1 + ρ2n2

2tn

2 + 2ρcn2 2

− 2ρd + 1 − tn (cid:6) (cid:6)vn − y∗

1 + ζ 2 − 2η2 + 2tnγ2 + tn 2 (cid:6) (cid:6) (cid:6) (cid:6) (cid:6) + tncn + tn (cid:6)en

(cid:6) (cid:6) jn

+ tnbn + tn

(4.27)

(cid:2)

and so (cid:2)1

n + (cid:2)2 n

→ 0 as n → ∞. This completes the proof.

Acknowledgments

The authors thank the referees for their valuable suggestions. This work was supported by the National Natural Science Foundation of China and the Educational Science Foun- dation of Chongqing (KJ051307).

References

[1] R. P. Agarwal, Y. J. Cho, J. Li, and N. J. Huang, Stability of iterative procedures with errors approx- imating common fixed points for a couple of quasi-contractive mappings in q -uniformly smooth Banach spaces, Journal of Mathematical Analysis and Applications 272 (2002), no. 2, 435–447.

[2] R. P. Agarwal, N. J. Huang, and Y. J. Cho, Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings, Journal of Inequalities and Applications 7 (2002), no. 6, 807–828.

[3] R. P. Agarwal, N. J. Huang, and M. Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions, Applied Mathematics Letters 17 (2004), no. 3, 345– 352.

14 Nonlinear relaxed cocoercive variational inequalities

[4] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities, Application to Free Boundary Problems, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1984. [5] J. Y. Chen, N. C. Wong, and J. C. Yao, Algorithm for generalized co-complementarity problems in

Banach spaces, Computers & Mathematics with Applications 43 (2002), no. 1-2, 49–54.

[6] Y. J. Cho, Y. P. Fang, N. J. Huang, and H. J. Hwang, Algorithms for systems of nonlinear variational

inequalities, Journal of the Korean Mathematical Society 41 (2004), no. 3, 489–499.

[7] Y. P. Fang and N. J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, Journal of Optimization Theory and Applications 118 (2003), no. 2, 327–338.

, Existence results for systems of strongly implicit vector variationa inequalities, Acta Math-

[8]

ematica Hungarica 103 (2004), no. 4, 265–277.

[9] N. J. Huang, On the generalized implicit quasivariational inequalities, Journal of Mathematical

Analysis and Applications 216 (1997), no. 1, 197–210.

[10] N. J. Huang, M. R. Bai, Y. J. Cho, and S. M. Kang, Generalized nonlinear mixed quasi-variational

inequalities, Computers & Mathematics with Applications 40 (2000), no. 2-3, 205–215.

[11] C. R. Jou and J. C. Yao, Algorithm for generalized multivalued variational inequalities in Hilbert

spaces, Computers & Mathematics with Applications 25 (1993), no. 9, 7–16.

[12] G. Kassay and J. Kolumb´an, System of multi-valued variational inequalities, Publicationes Math-

ematicae Debrecen 56 (2000), no. 1-2, 185–195.

[13] G. Kassay, J. Kolumb´an, and Z. P´ales, Factorization of Minty and Stampacchia variational in- equality systems, European Journal of Operational Research 143 (2002), no. 2, 377–389. [14] J. K. Kim and D. S. Kim, A new system of generalized nonlinear mixed variational inequalities in

Hilbert spaces, Journal of Convex Analysis 11 (2004), no. 1, 235–243.

[15] R. U. Verma, Projection methods, algorithms, and a new system of nonlinear variational inequali-

ties, Computers & Mathematics with Applications 41 (2001), no. 7-8, 1025–1031.

, Generalized system for relaxed coercive variational inequalities and projection methods,

[16]

Journal of Optimization Theory and Applications 121 (2004), 203–210.

[17] X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, Proceedings of the

American Mathematical Society 113 (1991), no. 3, 727–731.

[18] S. Z. Zhou, Perturbation for elliptic variational inequalities, Science in China (Scientia Sinica).

Series A 34 (1991), no. 6, 650–659.

Ke Ding: Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China E-mail address: keding@yahoo.com

Wen-Yong Yan: Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China E-mail address: wenyongy@yahoo.com

Nan-Jing Huang: Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China E-mail addresses: nanjinghuang@126.com; nanjinghuang@hotmail.com