intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề khảo sát chất lượng đầu năm Toán 9 (2011-2012) (Kèm đáp án)

Chia sẻ: Phan Thanh Thảo | Ngày: | Loại File: PDF | Số trang:6

206
lượt xem
11
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Để giúp cho học sinh có thêm tư liệu ôn tập và đánh giá năng lực trước kì khảo sát chất lượng đầu năm Toán 9. Mời các bạn tham khảo đề khảo sát chất lượng đầu năm Toán 9 (2011-2012) có kèm đáp án. Mong rằng bạn sẽ có được điểm cao như mong muốn.

Chủ đề:
Lưu

Nội dung Text: Đề khảo sát chất lượng đầu năm Toán 9 (2011-2012) (Kèm đáp án)

  1. PHÒNG GD&ĐTPHÚC YÊN ĐỀ KHẢO SÁT LẦN 1 MÔN: TOÁN 9 Năm học 2011 - 2012 Thời gian: 120 phút (Không kể thời gian giao đề) I. Phần trắc nghiệm. Viết vào bài làm chữ cái trước những câu trả lời mà em chọn là kết quả đúng. Câu 1. Điều kiện xác định của biểu thức 2 x  3 là: 3 3 3 3 A. x  B. x  C. x  D. x  2 2 2 2 Câu 2. Tính (1  3) 2 được kết quả là: A. 3  1 B.  (1  3 ) C. 1 3 D. 2 Câu 3. Cho tam giác ABC vuông ở A, biết BC = 13; AB = 12 giá trị của sinB là: 3 4 5 6 A. . B. . C. . D. . 13 13 13 13 Câu 4. Cho tam giác ABC vuông tại A, đường cao AH. Hệ thức nào sau đây sai ? A. BC.AH = AB.AC B. AH2 = AB2+AC2 2 C. AC = BC.CH D. AH2 = BH.CH II. Phần tự luận. Câu 5. Tính:     2 2 a) 5 2  2 5 b) Tính giá trị của biểu thức M =  16a  4a 2  4a  1 tại a = -0,25 Câu 6. Tìm x biết x 2  3x  2  x  2  1 1  x 1 Câu 7. Cho biểu thức A =   :  x x  x 1  x 1  2 a) Tìm tập xác định và rút biểu thức A 1 b) Tim giá trị của x để A > . 3 c) Tìm giá trị lớn nhất của biểu thức P = A - 9 x Câu 8. Cho ABC vuông tại A, đường cao AH; HB = 3,6cm; HC = 6,4cm. a) Tính độ dài các đoạn thẳng: AB, AC, AH. b) Kẻ HE  AB; HF  AC. Tính diện tích tứ giác BEFC. 1 1 2 c) Kẻ phân giác AD (D  BC), chứng minh   AB AC AD x2  x 1 Câu 9. Tìm GTLN và GTNN của biểu thức sau: A  x2  x 1 ------------ Hết ------------ Họ và tên:…………………….…………..SBD:……………….
  2. PHÒNG GD&ĐTPHÚC YÊN HƯỚNG DẪN CHẤM KHẢO SÁT MÔN: TOÁN 9 Năm học 2011 - 2012 I. Phần trắc nghiệm. (2đ) Mỗi câu đúng cho 0,5 điểm Câu 1 2 3 4 Đáp án D A C B II. Phần tự luận. Câu Ý Nọi dung cần đạt Điểm  5 2  2 5 0,25 a  5  2  ( 5  2) 0,25 1đ Câu  5 2 5 2 0,25 5 2 2 0,25 Tính được kết quả M = 0,5 b Học sinh có thể đơn giản biểu thức rồi tính hoặc thay a vào biểu thức sau 1đ 1đ đó tính. x  2  0  x 2  3x  2  x  2   2 0,5đ  x  3x  2   x  2  2 Câu  1đ 6 x  2   x = 6. Vậy x = 6 là giá trị cần tìm. x  6 0,5đ Điều kiện xác định: x  0; x  1 a x 1 x 1 x 1 Biến đổi được A     :  2 0,75đ x x 1 x 1 x 3 x  3  x 2 x  3 1 x 1 1     Ta có A>    x  0   x  0 3 x 3 x  1 x  1     0,25 b  3  9  x2 x  4   9 9 1   x  0   x  0  x  . Vậy với  x  thì A > . Câu x  1 x  1 4 4 3 0,5 7     x 1  1  Với x>0 và x ≠ 1 ta có : P = A - 9 x =  9 x  9 x   1 x  x 0,25 Áp dụng bất đẳng thức Cô –si cho hai số dương ta có: 1 1 9 x  2 9 x.  6 => P  6  1  5 . Đẳng thức xảy ra khi c x x 1 1 9 x  x thỏa mãn điều kiện x>0 và x ≠ 1 0,25 x 9 1 Vậy giá trị lớn nhất của biểu thức P  5 khi x  9
  3. A Vẽ hình đúng, đẹp cho 0,25 F M E B C 3,6 H D 6,4 : Áp dụng hệ thức thức lượng trong tam giác vuông ABC a 0,5 Tính được AB = 6 cm; AC = 8cm; AH = 4,8 cm SBEFC  SABC  SAEF ; SABC  1 .6.8  24  cm2  2 0,25 Áp dụng hệ thức thức lượng trong các tam giác vuông ∆AHB và ∆AHC tính Câu b được BE = 2,16 cm; FC = 5,12 cm 0,25 8  AE = 6 – 2,16 = 3,84 cm ; AF = 8 – 5,12 = 2,88 cm.  SAEF  .3,84.2,88  5,5296  cm2   SBEFC  24  5,5296  18, 4704  cm2  1 0,25 2 DM CM Từ D kẻ DM // AB ta có  AB AC Mà CM = AC – AM ; AM = DM ( ∆AMD vuông cân đỉnh M)  CM = AC – DM DM AC  DM AC DM DM DM DM c      1    1 . Chia cả hai vế AB AC AC AC AC AB AC 0,25 1 1 1 cho DM ta được   Do ∆ADM vuông cân đỉnh M  AD = AB AC DM AD 1 1 2 2 DM  DM     (đpcm) 0,25 2 AB AC AD 2  1 3 Ta có x  x  1   x     0 với  x. Vậy TXĐ của biểu thức A là  x  2  2 4 R.. Do  x  1  0  2.  x  1  0  2x 2  4x  2  0  3.  x 2  x  1  x 2  x  1 2 2 0,5 x2  x 1 1  2  (1) (vì x 2  x  1  0 ). Dấu "=" xảy ra tại x = -1 Câu x  x 1 3 9 1 Vậy Min (A) = tại x = -1. 3 - Ta lại có  x 1  0  2.  x  1  0  2x 2  4x  2  0  3.  x 2  x  1  x 2  x  1 2 2 0,5 x2  x 1   3 (2) (vì x 2  x  1  0 ). Dấu "=" xảy ra tại x = 1. x  x 1 2 Vậy Max (A) = 3 tại x = 1.
  4. TRƯỜNG THCS MẠC ĐĨNH CHI ĐỀ KHẢO SÁT CHẤT LƯỢNG ĐẦU NĂM LỚP 9 NĂM HỌC 2011 – 2012 Môn: Toán Thời gian: 90 phút( Không kể thời gian giao đề) ĐỀ BÀI Câu 1: ( 1,5 điểm): a)Phát biểu định nghĩa phương trình bậc nhất một ẩn? Cho ví dụ? b)Áp dụng giải phương trình 2x-1= 0 Câu 2(2điểm) Giải các phương trình: a) ( x - 3 ) - 2(3x - 2) = ( x +4 ) 5 1 b) (x - )(x + ) = 0 6 2 3x  2 2  x Câu 3(1điểm)Giải bất phương trỡnh  và biểu diễn tập nghiệm trên trục số 3 5 Câu 4: (2điểm)Một đội máy kéo dự định mỗi ngày cày được 40 ha. Khi thực hiện, mỗi ngày cày được 52 ha. Vỡ vậy, đội không những đó cày xong trước thời hạn 2 ngày mà cũn cày thêm được 4 ha nữa. Tính diện tích ruộng mà đội phải cày theo kế hoạch đó định? Câu 5( 3,5 điểm) Cho hỡnh chữ nhật ABCD cú AB = 8cm; BC = 6cm. Vẽ đường cao AH của tam giác ABD a) Chứng minh AHB BCD b) Chứng minh AD2 = DH.DB c) Tính độ dài đoạn thẳng DH và AH
  5. Hướng dẫn chấm, thang điểm. Câu Đáp án Điểm 1(2đ) a)Phương trỡnh dạng ax+b=0, với a và b là hai số đó cho và a  0, được 0,25 gọi là phương trỡnh bậc nhất một ẩn Ví dụ: 3x+ 2= 0 0,25 b) 2x-1= 0  2x = 1  x = 1 0,25 2 Vậy phương trỡnh cú tập nghiệm là: S =   1 0,25   2 a) ( x - 3 ) - 2(3x - 2) = ( x +4 )  x – 3 - 6x + 4 = x + 4  - 6x = 3 0,25 1  x= 2 2(2đ) 1 Vậy tập nghiệm phương trỡnh là S =     0,25 2 b) (x - 5 1 5 )(x + ) = 0  x = hoặc x = - 1 0,5 6 2 6 2 3x  2 2  x  3 5 5 3x  2 3 2  x    15 15  15x  10  6  3x 0,25  12x  16 3(1đ) 4  x 0,25 3 Vậy tập nghiệm của bất phương trỡnh là:S=  x / x   4   0,25 4  3 0 3 0,25 + Gọi x là diện tích ruộng đội cày theo kế hoạch (ha; x > 40) 0,25 + Diện tích ruộng đội đó cày được là: x + 4 (ha) 0,25 . Số ngày đội dự định cày là: x (ha) 0,25 40 x4 0,25 . Số ngày đội đó cày là: (ha) 52 4(2đ) + Đội cày xong trước thời hạn 2 ngày nên ta có phương trỡnh: x x4 0,25 – =2 40 52 + Giải phương trỡnh được: x = 360 0,5 Đối chiếu và kết luận 0,25
  6. Vẽ hỡnh đúng được 0,5 điểm; ghi đúng GT, KL được 0,5 điểm Hỡnh chữ nhật ABCD: AB = 8cm A 8cm B GT BC = 6cm ; AH  BD = H 0,25 a) AHB BCD 6cm KL b) AD2 = DH.DB H Chứng minh D C 0,25 a)Xét AHB và BCD có C  H  900 ; B1  D1 (so le trong do AB // CD)  AHB BCD (g.g) 0,25 0,25 b)Xét AHD và BAD có A  H  900 ; D chung 0,25 5(3đ)  AHD BAD (g.g) 0,25 AD HD Do đó   AD.AD = HD.BD BD AD 0,25 Hay AD2 = DH.DB 0,25 c)Xét ABD ( A  900 ) AB = 8cm ; AD = 6cm, có DB = AB2  AD 2 = 82  62 = 100 =10(cm) Theo c/m trên: AD2 = DH.DB 0,25 2 AD 36  DH =  = 3,6(cm) DB 10 0,25 Vỡ AHD BAD (c.m.t) AB BD AB.AD 8.6 0,25    AH =  = 4,8(cm) AH AD BD 10 0,25
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2