Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Quảng Ngãi (2012-2013)
lượt xem 6
download
Để giúp bạn thêm phần tự tin trước kì thi tuyển sinh vào lớp 10. Hãy tham khảo đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Quảng Ngãi (2012-2013) để đạt được điểm cao hơn nhé.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Quảng Ngãi (2012-2013)
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 NĂM HỌC 2012-2013 QUẢNG NGÃI Môn thi: Toán (không chuyên) Thời gian làm bài: 120 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Bài 1: (1,5 điểm) 1/ Thực hiện phép tính: 2 1 2 1 x y 1 2/ Giải hệ phương trình: 2 x 3 y 7 3/ Giải phương trình: 9 x 2 8 x 1 0 Bài 2: (2,0 điểm) Cho parapol P : y x 2 và đường thẳng d : y 2 x m 2 1 (m là tham số). 1/ Xác định tất cả các giá trị của m để d song song với đường thẳng d ' : y 2m 2 x m 2 m . 2/ Chứng minh rằng với mọi m, d luôn cắt P tại hai điểm phân biệt A và B. 3/ Ký hiệu x A ; xB là hoành độ của điểm A và điểm B. Tìm m sao cho x A2 xB 2 14 . Bài 3: (2,0 điểm) Hai xe ô tô cùng đi từ cảng Dung Quất đến khu du lịch Sa Huỳnh, xe thứ hai đến sớm hơn xe thứ nhất là 1 giờ. Lúc trở về xe thứ nhất tăng vận tốc thêm 5 km mỗi giờ, xe thứ hai vẫn giữ nguyên vận tốc nhưng dừng lại nghỉ ở một điểm trên đường hết 40 phút, sau đó về đến cảng Dung Quất cùng lúc với xe thứ nhất. Tìm vận tốc ban đầu của mỗi xe, biết chiều dài quãng đường từ cảng Dung Quất đến khu du lịch Sa Huỳnh là 120 km và khi đi hay về hai xe đều xuất phát cùng một lúc. Bài 4: (3,5 điểm) Cho đường tròn tâm O đường kính AB = 2R và C là một điểm nằm trên đường tròn sao cho CA > CB. Gọi I là trung điểm của OA. Vẽ đường thẳng d vuông góc với AB tại I, cắt tia BC tại M và cắt đoạn AC tại P; AM cắt đường tròn (O) tại điểm thứ hai K. 1/ Chứng minh tứ giác BCPI nội tiếp được trong một đường tròn. 2/ Chứng minh ba điểm B, P, K thẳng hàng. 3/ Các tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại Q. Tính diện tích của tứ giác QAIM theo R khi BC = R. Bài 5: (1,0 điểm) 2 xy Cho x 0, y 0 thỏa mãn x 2 y 2 1 . Tìm giá trị nhỏ nhất của biểu thức A . 1 xy -------------- HẾT -------------- HƯỚNG DẪN GIẢI: Bài 1: 2 1/ 2 1 2 2 1 12 2 1 1 x y 1 3 x 3 y 3 5 x 10 x 2 2/ 2 x 3 y 7 2 x 3 y 7 x y 1 y 1 1 3/ Phương trình 9 x 2 8 x 1 0 có a b c 9 8 1 0 nên có hai nghiệm là: x1 1; x2 . 9 Bài 2: 1/ Đường thẳng d : y 2 x m 2 1 song song với đường thẳng d ' : y 2m 2 x m 2 m khi
- m 1 2 2m2 m 2 1 2 2 m 1 m 1 m 1 m m m 1 m 1 2/ Phương trình hoành độ giao điểm của d và P là x 2 2 x m 2 1 x 2 2 x m 2 1 0 là phương trình bậc hai có ac m 2 1 0 với mọi m nên luôn có hai nghiệm phân biệt với mọi m. Do đó d luôn cắt P tại hai điểm phân biệt A và B với mọi m. 3/ Cách 1: Ký hiệu x A ; xB là hoành độ của điểm A và điểm B thì x A ; xB là nghiệm của phương trình x 2 x m2 1 0 . 2 Giải phương trình x 2 2 x m 2 1 0 . ' 1 m2 1 m2 2 0 ' m2 2 Phương trình có hai nghiệm là x A 1 m 2 2; xB 1 m 2 2 . Do đó 2 2 x A2 xB 2 14 1 m 2 2 1 m2 2 14 1 2 m 2 2 m 2 2 1 2 m 2 2 m 2 2 14 2m 2 6 14 2m2 8 m 2 4 m 2 Cách 2: Ký hiệu x A ; xB là hoành độ của điểm A và điểm B thì x A ; xB là nghiệm của phương trình S x A xB 2 x 2 2 x m 2 1 0 . Áp dụng hệ thức Viet ta có: 2 do đó P x A .x B m 1 2 x A2 xB 2 14 x A xB 2 x A .xB 14 22 2 m 2 1 14 4 2m 2 2 14 m 2 Bài 3: Gọi vận tốc ban đầu của xe thứ nhất là x (km/h), xe thứ hai là y (km/h). ĐK: x > 0; y > 0. 120 Thời gian xe thứ nhất đi từ cảng Dung Quất đến khu du lịch Sa Huỳnh là h . x 120 Thời gian xe thứ hai đi từ cảng Dung Quất đến khu du lịch Sa Huỳnh là h . y 120 120 Vì xe thứ hai đến sớm hơn xe thứ nhất là 1 giờ nên ta có phương trình: 1 1 x y Vận tốc lúc về của xe thứ nhất là x+ 5 (km/h). 120 Thời gian xe thứ nhất về từ khu du lịch Sa Huỳnh đến cảng Dung Quất h . x5 120 Thời gian xe thứ hai về từ khu du lịch Sa Huỳnh đến cảng Dung Quất h . y 2 Vì xe thứ hai dừng lại nghỉ hết 40 ph h , sau đó về đến cảng Dung Quất cùng lúc với xe thứ nhất nên ta 3 120 120 2 có phương trình: 2 . x5 y 3 120 120 x y 1 Từ (1) và (2) ta có hpt: 120 120 2 x 5 y 3
- 120 120 x y 1 120 120 1 Giải hpt: 360 x 5 360 x x x 5 x 2 5 x 1800 0 120 120 2 x x5 3 x 5 y 3 25 4.1800 7225 0 85 . 5 85 Phương trình có hai nghiệm phân biệt: x1 40 (thỏa mãn ĐK) 2 5 85 x2 45 (không thỏa mãn ĐK) 2 M 120 120 120 Thay x 40 vào pt (1) ta được: 1 2 y 60 (thỏa mãn ĐK). 40 y y Vậy vận tốc ban đầu của xe thứ nhất là 40 km/h, xe thứ hai là 60 km/h. Q Bài 4:(Bài giải vắn tắt) a) Tứ giác BCPI nội tiếp (hs tự cm). b) Dễ thấy MI và AC là hai đường cao của MAB P là trực tâm C của MAB BP là đường cao thứ ba BP MA 1 . K Mặt khác AKB 900 (góc nội tiếp chắn nữa đường tròn) BK MA 2 . P A B Từ (1) và (2) suy ra ba điểm B, P, Q thẳng hàng. I O c) AC AB 2 BC 2 4 R 2 R 2 R 3 Khi BC = R dễ thấy tam giác OBC là tam giác đều suy ra CBA 600 Mà QAC CBA (góc tạo bởi tia tiếp tuyến và góc nội tiếp cùng chắn AC ) do đó QAC 600 . Dễ thấy tam giác QAC cân tại Q (QA = QC) có QAC 600 nên là tam giác đều AQ AC R 3 . R 3R Dễ thấy AI ; IB 2 2 3R 3 3R Trong tam giác vuông IBM I 900 ta có IM IB. tan B IB. tan 600 2 3 2 . Ta chứng minh được tứ giác QAIM là hình thang vuông AQ / / IM ; I 900 . 1 1 3 3R R R 5R 3 5 3R 2 Do đó SQAIM AQ IM AI R 3 . (đvdt). 2 2 2 2 4 2 8 Bài 5: 2 xy 2 xy 1 1 xy 1 1 Cách 1: Ta có A A 1 xy 1 xy A 2 xy 2 xy 2 1 1 Vì x 0, y 0 A 0 A 0 0 do đó Amin Amax min . A A 2 1 Mặt khác x y 0 x 2 y 2 2 xy 2 xy 1 1 (vì 2 xy 0 ) 2 xy 1 1 3 Do đó 1 . Dấu “ = ” xảy ra khi x y . A 2 2 x 0, y 0 2 Từ x y xy 2 2 x y2 1
- 1 2 Lúc đó A 2 2 . Vậy min A 2 khi x y 2 . 1 3 3 2 1 2 x2 y2 1 3 1 2 2 4 Cách 2: Với x 0, y 0 ta có xy xy 1 xy 2 2 2 1 xy 3 1 xy 3 2 xy 2 4 2 Do đó A 2 2 . 1 xy 1 xy 3 3 Dấu “=” xảy ra khi x y . x 0, y 0 2 Từ x y xy 2 2 2 x y 1 2 2 Vậy min A khi x y . 3 2 Cách 3: Với x 0, y 0 và x 2 y 2 1 Ta có A 2 2 2 2 2 xy 2 2 xy 6 xy 2 x y 4 xy 2 x y 2 0 A 2 3 3 1 xy 3 1 xy 3 1 xy 3 1 xy 3 2 2 2 Dấu “=” xảy ra khi x y . Vậy min A khi x y . 2 3 2 a a 2 xy A b 0; b 0 b 1 xy 0 a axy 2bxy 0 a x 2 y 2 2b a xy 0 a 0 2 2 2b a a 2 a x y xy 0 2b a a a 2 b 3
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi tuyển sinh môn Toán năm 2013-2014 - THPT Chuyên Thái Bình
1 p | 482 | 44
-
Bộ đề thi tuyển sinh môn Toán 6 - Trường THPT Trần Đại Nghĩa. Tp Hồ Chí Minh
66 p | 133 | 16
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Bình Định (2012-2013)
3 p | 236 | 11
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Thừa Thiên Huế (2012-2013)
5 p | 111 | 10
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Bắc Giang (2012-2013)
4 p | 130 | 8
-
Bộ 20 đề thi tuyển sinh môn Toán vào lớp 10 THPT năm 2019-2020 có đáp án
100 p | 113 | 7
-
Tuyển tập 20 năm đề thi tuyển sinh môn Toán vào 10 tỉnh Hòa Bình
39 p | 39 | 7
-
Đề thi tuyển sinh môn Toán 10 chung - Sở GD&ĐT Đồng Nai (2012-2013)
7 p | 156 | 7
-
Bộ 50 đề thi tuyển sinh môn Toán vào lớp 10 THPT chuyên năm 2018-2019 có đáp án
183 p | 288 | 6
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hòa Bình (2012-2013)
3 p | 107 | 5
-
Đề thi tuyển sinh môn Toán chuyên 10 - Sở GD&ĐT Quảng Nam (2012-2013)
4 p | 81 | 5
-
Bộ 16 đề thi tuyển sinh môn Toán vào lớp 10 THPT năm 2017-2018 có đáp án
77 p | 104 | 5
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Bắc Ninh (2012-2013)
3 p | 66 | 4
-
Đề thi tuyển sinh môn Toán 6 năm 2010-2011 - Trường THCS Đoàn Thị Điểm
3 p | 139 | 4
-
Luyện thi môn Toán khối A - Giới thiệu đề thi tuyển sinh vào đại học 1997-2002 (Tập 1): Phần 1
76 p | 99 | 3
-
Bộ 21 đề thi tuyển sinh môn Toán vào lớp 10 THPT năm 2018-2019 có đáp án
99 p | 86 | 3
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Hải Dương (2012-2013)
4 p | 106 | 3
-
Đề thi tuyển sinh môn Toán 10 - Sở GD&ĐT Bà Rịa Vũng Tàu (2012-2013)
3 p | 74 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn