intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Giáo trình Vật lý phân tử và nhiệt học: Phần 1

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:54

14
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Giáo trình "Vật lý phân tử và nhiệt học: Phần 1" có nội dung trình bày về: phương trình trạng thái lí tưởng, định luật chất khí lí tưởng, trạng thái chất khí lí tưởng, quy luật chuyển động nhiệt, cấu tạo phân tử các chất,... Đồng thời cung cấp một số bài tập về các định luật chất khí, phương trình trạng thái và nguyên lí I NĐLH. Mời thầy cô và các em cùng theo dõi chi tiết giáo trình tại đây nhé.

Chủ đề:
Lưu

Nội dung Text: Giáo trình Vật lý phân tử và nhiệt học: Phần 1

  1. vËt lý ph©n tö vµ nhiÖt häc VËt lÝ ph©n tö vµ nhiÖt häc b¾t ®Çu tõ viÖc nghiªn cøu quy luËt chuyÓn ®éng nhiÖt cña c¸c ph©n tö. Trªn c¬ së chuyÓn ®éng nhiÖt c¸c ph©n tö ®ã, b»ng ph­¬ng ph¸p thèng kª hoÆc ph­¬ng ph¸p nhiÖt ®éng ng­êi ta cã thÓ nghiªn cøu vÒ tr¹ng th¸i cña tËp hîp rÊt lín c¸c ph©n tö (gäi lµ hÖ nhiÖt ®éng). §Æc tr­ng cho tr¹ng th¸i cña mét hÖ nhiÖt ®éng lµ c¸c th«ng sè tr¹ng th¸i, quy luËt vÒ sù biÕn ®æi c¸c th«ng sè nµy cho phÐp ta x¸c ®Þnh ®­îc quy luËt chuyÓn ho¸ n¨ng l­îng cña hÖ. Ch­¬ng I: Ph­¬ng tr×nh tr¹ng th¸i khÝ lý t­ëng  Môc ®Ých ch­¬ng: N¾m v÷ng néi dung vµ øng dông mét sè ®Þnh luËt thùc nghiÖm vÒ chÊt khÝ lý t­ëng: B«i - Marièt, S¸cl¬, Gayluýtx¾c. N¾m v÷ng néi dung vµ øng dông ph­¬ng tr×nh tr¹ng th¸i khÝ lý t­ëng trªn c¬ së më réng hÖ thøc P,V,T cña chÊt khÝ.  Yªu cÇu: ¸p dông c¸c ®Þnh luËt ®Ó gi¶i thÝch c¸c hiÖn t­îng vÒ nhiÖt. N¾m v÷ng néi dung, c«ng thøc vµ ph¹m vi ¸p dông cña c¸c ®Þnh luËt c¬ häc ®Ó gi¶i quyÕt c¸c bµi to¸n cã néi dung thùc tÕ. C¸c ®Þnh luËt c¬ b¶n cña chÊt khÝ lý t­ëng. I. Th«ng sè tr¹ng th¸i. C¸c th«ng sè tr¹ng th¸i cña chÊt khÝ: Tr¹ng th¸i cña mét hÖ hoµn toµn ®­îc x¸c ®Þnh nÕu biÕt ®­îc c¸c ®Æc tÝnh cña hÖ: nãng hay l¹nh, ®Æc hay lo·ng vµ bÞ nÐn Ýt hay nhiÒu... Mçi ®Æc tÝnh nh­ vËy ®Òu ®­îc ®Æc tr­ng b»ng mét ®¹i l­îng vËt lý bao gåm: nhiÖt ®é, thÓ tÝch, khèi l­îng, ¸p suÊt. Nh÷ng ®Æc tr­ng kÓ trªn ®­îc gäi lµ c¸c th«ng sè tr¹ng th¸i cña chÊt khÝ. 1. ¸p suÊt.  §Þnh nghÜa: §¹i l­îng vËt lý ®­îc x¸c ®Þnh b»ng lùc t¸c dông vu«ng gãc lªn mét ®¬n vÞ diÖn tÝch. F  BiÓu thøc: P Víi F: C­êng ®é lùc t¸c dông vu«ng gãc lªn diÖn tÝch S S N  §¬n vÞ: 2 ; at; mmHg; tor m  Quy ®æi c¸c ®¬n vÞ: 1at = 9,81.10 4 N/m2; 1mmHg = ¸p suÊt g©y bëi träng l­îng cña cét Hg cao 1mm 1at =736 mmHg ; 1mmHg =13,6 mmH2O Gi¶i thÝch: P Hg h1SDg PHg = mHg.g  P1    DHg g S S 1
  2. PH2O PH = m H 2O .g  P2   h D H2O .g 2 2O S P h D h1D1  1  1 1 nÕu P1 = P2  h 2  P2 h 2 D 2 D2 hn­íc = hHg 13,6 -> hn­íc = 13,6 hHg (1) 1,0 + C¸ch x¸c ®Þnh ¸p suÊt tÜnh trong lßng chÊt láng Pkq 1  P1=PM h PM=PN=Pkq+h h M  N P1=Pkq+h   M PM=Pkq(mmHg)+hM(mmHg) . (h×nh1.1) (h×nh1..2 ) 2. NhiÖt ®é.  §Æc tr­ng cho møc ®é nãng hay l¹nh cña hÖ, b¶n chÊt cña nhiÖt ®é vËt thÓ lµ do chuyÓn ®éng nhiÖt hçn ®én.  X¸c ®Þnh nhiÖt ®é b»ng nhiÖt biÓu; Nguyªn t¾c cña nhiÖt biÓu lµ: ®o ®é biÕn thiªn cña mét ®¹i l­îng nµo ®Êy råi suy ra nhiÖt ®é. o  §¬n vÞ: t C lµ ®¬n vÞ nhiÖt ®é trong nhiÖt giai Xenxiuyt (b¸ch ph©n). ToK lµ nhiÖt ®é trong nhiÖt giai Kenvin (tuyÖt ®èi) (toC+273) =ToK trong nhiÖt giai Xenxiuyt th× 0oC th× P  0 trong nhiÖt giai Kenvin th× 0oK th× P = 0. C¸c ®Þnh luËt chÊt khÝ: (C¸c ®Þnh luËt diÔn t¶ mèi quan hÖ gi÷a c¸c th«ng sè tr¹ng th¸i víi nhau) II. C¸c ®Þnh luËt thùc nghiÖm. 1. §Þnh luËt B«il¬ Marièt (VÒ mèi quan hÖ P vµ V khi T kh«ng ®æi)  Néi dung ®Þnh luËt: Trong qu¸ tr×nh ®¼ng nhiÖt, tÝch thÓ tÝch vµ ¸p suÊt cña mét khèi l­îng khÝ cã trÞ sè kh«ng thay ®èi.  BiÓu thøc ®Þnh luËt: P1V1 = P2V2 (VP = const)  §iÒu kiÖn ¸p dông: m kh«ng ®æi, T= const  §å thÞ: hä ®­êng ®¼ng nhiÖt lµ hä ®­êng hypecb«n trong hÖ trôc P,V. 2. §Þnh luËt Gayluytxac (mèi quan hÖ P vµ T khi V kh«ng ®æi)  Néi dung: Trong qu¸ tr×nh ®¼ng tÝch hÖ sè t¨ng ¸p suÊt  cña mäi chÊt khÝ ®Òu b»ng nhau vµ 1 cã trÞ sè   . 273 P  Po  BiÓu thøc:  t  Pt  Po (1  t ) (4.2) t Tõ ®ã cã thÓ biÓu diÔn thµnh c¸c d¹ng kh¸c theo nhiÖt ®é tuyÖt ®èi T nh­ sau: Pt  Po T P P P hoÆc c¸ch kh¸c : 1  2   const (4.3) T1 T2 T 2
  3.  V  const  §iÒu kiÖn ¸p dông:  m  const  §å thÞ: Hä ®­êng ®¼ng tÝch lµ nh÷ng ®­êng th¼ng ®i qua gèc to¹ ®é vÏ trong hÖ P, T hoÆc nh÷ng ®­êng th¼ng kh«ng qua gèc to¹ ®é c¾t trôc tung t¹i P0 vµ trôc hoµnh t¹i -273o C vÏ trong hÖ to¹ ®é P,t. 3. §Þnh luËt S¸c l¬ (mèi quan hÖ V vµ T khi P kh«ng ®æi)  Néi dung ®Þnh luËt: Trong qu¸ tr×nh ¸p suÊt kh«ng ®æi, hÖ sè t¨ng thÓ tÝch  cña mäi chÊt khÝ 1 ®Òu b»ng nhau vµ cã trÞ sè   . 273 Vt  Vo  BiÓu thøc:   Vt  Vo (1   t ) (4.4) t Tõ ®ã cã thÓ biÓu diÔn thµnh c¸c d¹ng kh¸c theo nhiÖt ®é tuyÖt ®èi T nh­ sau: Vt  Vo T V V V hoÆc c¸ch kh¸c : 1  2   const (4.5) T1 T2 T  P  const  §iÒu kiÖn ¸p dông:  m  const + §å thÞ: Hä ®­êng ®¼ng tÝch lµ nh÷ng ®­êng th¼ng ®i qua gèc to¹ ®é vÏ trong hÖ V, T hoÆc nh÷ng ®­êng th¼ng kh«ng qua gèc to¹ ®é c¾t trôc tung t¹i V0 vµ trôc hoµnh t¹i -273o C trong hÖ to¹ ®é V,t. 4. HÖ thøc P,V,T chÊt khÝ lý t­ëng. 4.1. Kh¸i niÖm vÒ khÝ lý t­ëng.  §Þnh luËt B-M & Gayluytxac chØ ®óng trong ®iÒu kiÖn nhiÖt ®é & ¸p suÊt th­êng (trong phßng thÝ nghiÖm), ®èi víi chÊt khÝ cã P cao th× kh«ng hoµn toµn ®óng.  KhÝ lý t­ëng lµ mÉu khÝ hoµn toµn tu©n theo c¸c ®Þnh luËt B-M vµ Gayluytxac: C¸c phÇn tö khÝ lý t­ëng kh«ng cã kÝch th­íc khi ®ã V b×nh chøa lµ thÓ tÝch kh«ng gian ho¹t ®éng tù do. C¸c phÇn tö khÝ lý t­ëng kh«ng t­¬ng t¸c víi nhau do vËy ¸p suÊt chÊt khÝ b»ng ¸p suÊt va ch¹m c¸c phÇn tö víi thµnh b×nh. 4.2. Thµnh lËp ph­¬ng tr×nh tr¹ng th¸i. XÐt qu¸ tr×nh biÕn ®æi tr¹ng th¸i cña mét khèi l­îng khÝ tõ tr¹ng th¸i 1 sang tr¹ng th¸i 2 th«ng qua mét tr¹ng th¸i trung gian * nh­ s¬ ®å diÔn biÕn sau: Tr¹ng th¸i 1 Tr¹ng th¸i 2 P1 V1 T1 P2 V2 T2 qu¸ tr×nh ®¼ng nhiÖt qu¸ tr×nh ®¼ng tÝch Tr¹ng th¸i * P* V* T* (h×nh 4.3) PV §Þnh luËt B«i Marièt viÕt cho qu¸ tr×nh thø nhÊt : P1V1=P*’ V* rót ra P*  1*1 (1) V 3
  4. P* P2 P2 PV P §Þnh luËt Gayluyxac viÕt cho qu¸ tr×nh thø hai: *   rót ra 1* 1*  2 (2) T T2 T1 V T T2 Thay V* = V2 trong biÓu thøc (2) vµ chuyÓn c¸c ®¹i l­îng cã cïng chØ sè sang cïng mét vÕ, ta PV PV PV ®­îc: 1 1  2 2   const (4.6) T1 T2 T KÕt luËn: §èi víi mét khèi l­îng khÝ nhÊt ®Þnh, tÝch thÓ tÝch vµ ¸p suÊt chia cho nhiÖt ®é tuyÖt ®èi ®Òu b»ng nhau vµ cã trÞ sè kh«ng ®æi. ph­¬ng tr×nh tr¹ng th¸i cña chÊt khÝ lý t­ëng. 1. Ph­¬ng tr×nh tr¹ng th¸i ®èi víi mét kmol. Gäi P,V,T lµ c¸c th«ng sè tr¹ng th¸i cña mét kmol chÊt khÝ. ¸p dông hÖ thøc PVT cho kmol khÝ ®ã P1V1 P2 V2 PV Po Vo   .................   T1 T2 T To Po Vo To lµ th«ng sè tr¹ng th¸i cña mét kmol khÝ ë ®iÒu kiÖn tiªu chuÈn: Po = 1,033 at = 1,013.105 N/m2 , Vo = 22,4m3 , T = 273o K. PV Khi ®ã ta cã: R (4.7) T ( ®©y lµ ph­¬ng tr×nh tr¹ng th¸i viÕt cho mét kmol khÝ lý t­ëng) 1,013.1`05.22,4 TrÞ sè cña R lµ: R  8,31.10 3 J / kmol.K 273 1,033. 22,4 R  0,084at.m 3 / kmol. K (4.8) 273 2. Ph­¬ng tr×nh tr¹ng th¸i ®èi víi mét khèi l­îng khÝ bÊt kú. XÐt khèi l­îng m khÝ bÊt kú cã c¸c th«ng sè tr¹ng th¸i PVT. Trong khèi l­îng m ®ã ¸p suÊt vµ m nhiÖt ®é gièng nhau ®èi víi mäi kmol, do vËy T = T ; P = P vµ thÓ tÝch V  V .  P  Thay vµo ph­¬ng tr×nh tr¹ng th¸i 4.2.1 ta ®­îc: VR Tm m ViÕt l¹i thµnh PV  RT (4.9)  ( ®©y lµ ph­¬ng tr×nh tr¹ng th¸i khÝ lý t­ëng) 3. ¸p dông. Ph­¬ng tr×nh tr¹ng th¸i khÝ lý t­ëng cã ph¹m vi ¸p dông réng r·i h¬n hÖ thøc PVT. HÖ thøc PVT chØ ®­îc ¸p dông ®èi víi khèi l­îng khÝ nhÊt ®Þnh cã khèi l­îng khéng thay ®æi, cßn ph­¬ng tr×nh tr¹ng th¸i cã thÓ ¸p dông ®èi víi khèi l­îng khÝ bÊt k×. Ta sÏ ¸p dông ®iÒu ®ã vµo gi¶i bµi tËp sau: Bµi tËp 1: Mét l­îng khÝ «xy m = 500gam, ®ùng trong b×nh cã dung tÝch b»ng 2lÝt, nhiÖt ®é 27O C. TÝnh ¸p suÊt cña khÝ cßn l¹i trong b×nh khi mét nöa l­îng khÝ ®ã ®· tho¸t ra khái b×nh vµ nhiÖt ®é n©ng lªn 87O C. Cho biÕt ¤xy cã  = 32kg/kmol. H­íng dÉn. 4
  5. m1 m Tr¹ng th¸i ban ®Çu: PV 1 1   RT1  P1  1 RT1 (1) V1 m m m Tr¹ng th¸i sau: P2V2  2 RT2  P2  2 RT2  1 RT2 (2)  V2  2V1 V× cã V1 = V2 = V vµ m2 = m1 /2 P1T2 0,5.8, 31.103.300 6 2 Chia hai vÕ ta ®­îc P2  , trong ®ã P1   3  19,5.10 N / m 2T1 32.2.10 19,5.106.360 Thay vµo trªn P2   11, 7.106 N / m2 600 Bµi tËp 2: Qu¸ tr×nh biÕn ®æi cña 20gam khÝ ¤xy ®­îc m« t¶ qua ®å thÞ. H·y ¸p dông c«ng thøc ®Ó x¸c ®Þnh T3 ? P (at) 1  0,5   2 3 O 0,2 (h×nh 4.4) V(m3 ) H­íng dÉn  ¸p dông ph­¬ng tr×nh tr¹ng th¸i t¹i 2: m2 PV 0,5.0,2.32 P2 V2  RT2  T2  2 2   190 O K  mR 0,084.20.10 3  ¸p dông ®Þnh luËt Gayluyxac gi÷a hai tr¹ng th¸i 2 vµ 3: V2 V3 VT 4.190   T3  3 2   3800 O K T2 T3 V2 0,2 HoÆc cã thÓ lµm theo c¸ch kh¸c nh­ sau:  ¸p dông ph­¬ng tr×nh tr¹ng th¸i t¹i 2: m2 PV 0,5.0,2.32 P2 V2  RT2  T2  2 2   190 O K  mR 0,084.20.10 3  ¸p dông qu¸ tr×nh ®¼ng tÝch gi÷a hai tr¹ng th¸i 2 vµ 1 P2 P1 P T 190o   T1  1 2   3800 o K T2 T1 P2 0,5 thuyÕt ®éng häc ph©n tö vÒ chÊt khÝ 1. CÊu t¹o ph©n tö c¸c chÊt:  Mäi chÊt ®Òu ®­îc cÊu t¹o tõ c¸c h¹t rÊt nhá bÐ d¹ng ph©n tö, nhá h¬n lµ nguyªn tö vµ nhá h¬n n÷a lµ c¸c h¹t vi m« (nh­ c¸c h¹t nuclon). 5
  6.  Sè l­îng c¸c ph©n tö lµ v« cïng lín, c¸c chÊt kh¸c nhau th× thÓ tÝch riªng cña c¸c ph©n tö còng kh¸c nhau, tuy nhiªn trong mét kmol ph©n tö cña bÊt k× mét chÊt nµo còng chøa mét sè lín c¸c ph©n tö b»ng nhau lµ NA =6,023.1026 ph©n tö (NA gäi lµ sè Av«ga®r«).  C¸c ph©n tö t­¬ng t¸c lÉn nhau b»ng c¸c lùc hót hoÆc c¸c lùc ®Èy. Ta cã thÓ m« pháng c¸c ph©n tö nh­ c¸c qu¶ cÇu nhá ®­îc liªn kÕt víi nhau b»ng nh÷ng lß xo ®µn håi, khi gÇn nhau th× xuÊt hiÖn lùc ®Èy vµ xa nhau th× xuÊt hiÖn lùc kÐo l¹i.  Kho¶ng c¸ch t­¬ng ®èi gi÷a c¸c ph©n tö s¾p xÕp theo thø tù gi¶m dÇn theo chÊt khÝ, chÊt láng vµ chÊt r¾n.  B»ng c¸c thùc nghiÖm ng­êi ta ®· x¸c nhËn ®­îc c¸c ph©n tö chÊt khÝ vµ láng lu«n lu«n chuyÓn ®éng hçn lo¹n vµ kh«ng ngõng, cßn c¸c ph©n tö chÊt r¾n th× dao ®éng hçn lo¹n xung quanh vÞ trÝ c©n b»ng. 2. Néi dung thuyÕt ®éng häc ph©n tö: Dùa trªn cÊu t¹o cÊu t¹o ph©n tö cña c¸c chÊt vµ chuyÓn ®éng hçn lo¹n kh«ng ngõng cña c¸c ph©n tö chÊt cïng víi sù quan s¸t b»ng thùc nghiÖm, ng­êi ta ®­a ra thuyÕt ph©n tö khÝ lý t­ëng nh­ sau:  C¸c chÊt khÝ cã cÊu tróc gi¸n ®o¹n gåm sè lín c¸c ph©n tö.  C¸c ph©n tö lu«n ë tr¹ng th¸i chuyÓn ®éng hçn lo¹n vµ kh«ng ngõng.  KÝch th­íc riªng cña c¸c ph©n tö rÊt nhá bÐ so víi kho¶ng c¸ch gi÷a chóng, coi ph©n tö nh­ mét chÊt ®iÓm chuyÓn ®éng.  C¸c ph©n tö kh«ng t­¬ng t¸c lÉn nhau. Trõ lóc chóng va ch¹m vµo nhau hoÆc va ch¹m vµo thµnh b×nh lµ hoµn toµn ®µn håi tu©n theo c¸c ®Þnh luËt c¬ häc cña Niut¬n. 3. Ph­¬ng tr×nh thuyÕt ®éng häc ph©n tö: XÐt b×nh chøa khÝ cã mËt ®é ph©n tö lµ no, c¸c ph©n tö chuyÓn ®éng hçn lo¹n víi vËn tèc trung b×nh lµ v, khi c¸c ph©n tö ®Ëp vµo thµnh b×nh th× g©y nªn ¸p suÊt ®èi víi thµnh b×nh vµ ®ã còng lµ ¸p suÊt cña chÊt khÝ bªn trong b×nh chøa (h×nh 4.5). v.t S thµnh b×nh (h×nh 4.5) Gäi F lµ lùc t¸c dông vu«ng gãc vµo diÖn tÝch  s cña thµnh b×nh F Theo biÓu thøc ®Þnh nghÜa vÒ ¸p suÊt; P s Trong ®ã F lµ c­êng ®é lùc tæng hîp cña n c¸c ph©n tö t¸c dông vu«ng gãc lªn diÖn tÝch S trong kho¶ng thêi gian t. Ta cã F = n.f ( f lµ c­êng ®é lùc do mét ph©n tö t¸c dông vµo thµnh b×nh) TÝnh n ? 6
  7. Sè h¹t cã kh¶ n¨ng ®Õn va ch¹m vµo s trong thêi gian t sÏ n»m trong thÓ tÝch V , ®¸y lµs vµ ®­êng cao lµ v.t. Do vËy V  S.v.t Sè phÇn tö N cã trong thÓ tÝch V ®­îc x¸c ®Þnh lµ N = no. V = no .  s.v.  t Do tÝnh chÊt hçn lo¹n cña c¸c ph©n tö nªn theo h­íng vu«ng gãc  s chØ cã 1/6 sè h¹t trong N n o .s.v.t tæng sè nãi trªn míi tíi va ch¹m vµo thµnh b×nh n =  h¹t. 6 6 TÝnh f? §é biÕn thiªn ®éng l­îng gi÷a mét h¹t ph©n tö va ch¹m vµo thµnh b×nh trong  t lµ:  ki = fi.t k 2mv mµ ki = 2mv.  f i   t t TÝnh F ? n o .s.v.t 2m i .v i n 2 F =F  .  o .m i .v i .s 6 t 3 TÝnh ¸p suÊt P? F m .v 2 2 m .v 2 1 P = no. i i  n o i i Trong ®ã: v 2  ( v 12  v 22  ...  v 2n ). s 3 3 2 n 2 P no .Wd (4.9) 3 NhËn xÐt: ¸p suÊt phô thuécvµo mËt ®é vµ ®éng n¨ng tÞnh tiÕn trung b×nh cña mét phÇn tö gäi lµ ph­¬ng tr×nh c¬ b¶n cña thuyÕt ®éng häc ph©n tö khÝ. 4. HÖ qu¶:  Gi¶i thÝch c¸c ®Þnh luËt chÊt khÝ b»ng thuyÕt ®éng häc ph©n tö  BiÓu thøc ®éng n¨ng tÞnh tiÕn trung b×nh phô thuéc vµo nhiÖt ®é. Ta chøng minh d­íi ®©y:  RT P  V  3 RT 3 RT XÐt 1 Kmol chÊt khÝ lý t­ëng PV=RT P  2  wd  .  .  nowd 2 n oV 2 NA 3 3 w d  KT (víi K lµ h»ng sè B«nzman) (4.10) 2 R 8,31.10 3 J / Kmol.K TrÞ sè cña K lµ K=   1,38.10 23 J / do N 1 6,023.10 26 Kmol  TÝnh vËn tèc c¨n qu©n ph­¬ng: 1 wd  m.v 2 2 2 3RT 3RT  v   (m: khèi l­îng 1 ph©n tö vµ NA.m = ) 3 3 RT N Am  wd  KT  2 2 NA 3RT -> v 2  gäi v 2 vËn tèc c¨n qu©n ph­¬ng. (4.11)  2 * TÝnh mËt ®é ph©n tö: P n o .w d 3 3 P w d  KT P = noKT  n o = (4.12) 2 KT 7
  8. Mäi chÊt khÝ cã mËt ®é ph©n tö b»ng nhau d­íi cïng ¸p suÊt vµ nhiÖt ®é. XÐt trong §KTC: P = 1,013.105 N/m, To= 273oK th× mËt ®é lµ Po 1,013.10 5 N / m 2  25  2,687.10 25 no = KTo 1,38.10 J / do.273do ph©n tö/m3 H­íng dÉn häc vµ cñng cè kiÕn thøc ch­¬ng I  C©u hái «n tËp 1. ThÕ nµo lµ chÊt khÝ lý t­ëng? T¹i sao c¸c ®Þnh luËt vÒ tÝnh chÊt cña chÊt khÝ chØ ®óng víi khÝ lý t­ëng? 2. Ph¸t biÓu néi dung vµ viÕt biÓu thøc c¸c ®Þnh luËt chÊt khÝ? Nªu ®iÒu kiÖn ¸p dông cho tõng ®Þnh luËt ®ã. C¬ n¨ng gåm nh÷ng d¹ng n¨ng l­îng nµo? Nªu ®Þnh nghÜa víi tõng d¹ng n¨ng l­îng ®ã? 3. Thµnh lËp hÖ thøc P,V,T ®èi víi chÊt khÝ lý t­ëng? Nªu kÕt luËn vµ ®iÒu kiÖn ¸p dông? T¹i sao c¸c ®Þnh luËt chÊt khÝ l¹i lµ tr­êng hîp riªng cña hÖ thøc P,V,T? 4. Thµnh lËp ph­¬ng tr×nh tr¹ng th¸i chÊt khÝ víi 1kmol vµ khèi l­îng bÊt kú? T¹i sao ph­¬ng tr×nh tr¹ng th¸i cßn tæng qu¸t h¬n c¶ hÖ thøc P,V,T? 5. Nªu c¸c gi¶ thuyÕt c¬ b¶n cña thuyÕt ®éng häc ph©n tö khÝ lý t­ëng? ThiÕt lËp nh÷ng ph­¬ng tr×nh c¬ b¶n cña thuyÕt ®éng häc ph©n tö khÝ lý t­ëng?  BµI tËp 6. Cã 10gam khÝ «xy ë ¸p suÊt 3at vµ nhiÖt ®é 10oC, ®­îc h¬ nãng ®¼ng ¸p gi·n në tíi thÓ tÝch 10lÝt. H·y tÝnh a) ThÓ tÝch cña khèi khÝ tr­íc khi h¬ nãng? b) NhiÖt ®é cña khèi khÝ sau khi h¬ nãng? Cho biÕt khèi khÝ cã khèi l­îng kmol ph©n tö lµ  = 32kg.kmol-1. 7. Cã 2gam khÝ ë ¸p suÊt 2.105N/m2 chøa trong thÓ tÝch 820cm3. TÝnh nhiÖt ®é cña khèi l­îng khÝ ®ã? Cho biÕt  = 28,8kg.kmol-1. 8. Mét b×nh cã thÓ tÝch 12lÝt chøa ®Çy khÝ nit¬ cã ¸p suÊt vµ nhiÖt ®é cña khèi khÝ lÇn l­ît lµ 80at vµ 17oC. TÝnh khèi l­îng cña khÝ ®ã trong b×nh. Cho  = 28kg.kmol-1. 9. Cã 10 gam khÝ hi®r« ë ¸p suÊt 8,2at ®ùng trong mét b×nh cã thÓ tÝch 20lÝt. Cho  = 2kg.kmol-1. a) TÝnh nhiÖt ®é cña khèi khÝ. b) H¬ nãng ®¼ng tÝch khèi khÝ nµy tíi khi ¸p suÊt cña nã b»ng 9at. TÝnh nhiÖt ®é cña khèi khÝ khi ®ã. 10. Cã 40 gam khÝ « xy, thÓ tÝch 3lÝt, ¸p suÊt 10at. a) TÝnh nhiÖt ®é cña khèi khÝ? b) Cho khèi khÝ d·n në ®¼ng ¸p tíi thÓ tÝch 4lÝt. hái nhiÖt ®é cña khèi khÝ sau khi d·n në? 11. Mét èng thuû tinh tiÕt diÖn ®Òu, mét ®Çu kÝn, mét ®Çu hë. Lóc ®Çu ng­êi ta nhóng ®Çu hë vµo mét chËu n­íc sao cho mùc n­íc trong vµ ngoµi èng b»ng nhau, chiÒu cao cña cét khÝ cßn l¹i trong èng lµ 20cm (h×nh4.6a). Sau ®ã, ng­êi tÞnh tiÕn èng dÞch lªn trªn so víi mÆt n­íc 4cm (h×nh4.6b). Hái mùc n­íc trong èng d©ng lªn bao nhiªu? BiÕt r»ng ¸p suÊt khÝ quyÓn lµ 760mmHg vµ nhiÖt ®é xung quanh kh«ng thay ®æi. ho=4cm h1=20cm 8 hx=?
  9. 12. Cã 10 gam khÝ «xy ë ¸p suÊt 3at vµ nhiÖt ®é 10oC h¬ nãng ®¼ng ¸p, khÝ d·n në ®Õn thÓ tÝch 10 lÝt. x¸c ®Þnh: a) ThÓ tÝch cña khÝ «xy tr­íc khi h¬ nãng? b) NhiÖt ®é cña khÝ sau khi h¬ nãng? c) Khèi l­îng riªng cña khÝ tr­íc vµ sau khi gi·n në. 13. Cã hai b×nh th«ng nhau b»ng mét èng thuû tinh cã kho¸, mçi b×nh chøa mét lo¹i khÝ kh¸c nhau. thÓ tÝch cña b×nh thø nhÊt lµ 2 lÝt vµ ¸p suÊt b»ng 1at, b×nh thø hai cã thÓ tÝch lµ3lÝt cã ¸p suÊt 2at (h×nh 4.7). TÝnh ¸p suÊt cña hai b×nh khi chóng ®­îc th«ng nhau khi më kho¸. Coi qu¸ tr×nh më kho¸ lµ qu¸ tr×nh ®¼ng nhiÖt. 14. Mét èng phong vò biÓu cã lät vµo trong mét l­îng nhá kh«ng khÝ (h×nh 4.8), do ®ã ë ®iÒu kiÖn b×nh th­êng t = 0o nã chØ 750 mmHg, trong khi ®ã ¸p suÊt thùc tÕ cña khÝ quyÓn l¹i lµ 760mmHg. TÝnh khèi l­îng riªng cña l­îng khÝ ®· lät trong èng phong vò biÓu. Cho  = 29kg/kmol. Pkq=760mmHg ho=750mmHg AA B (h×nh 4.7) (h×nh 4.8) 15. Mét b×nh chøa mét chÊt khÝ nÐn ë nhiÖt ®é 270C vµ ¸p suÊt 40at. T×m ¸p suÊt cña chÊt khÝ ®ã khi ®· cã mét nöa khèi l­îng khÝ tho¸t ra khái b×nh vµ nhiÖt ®é h¹ xuèng 12o C. Ch­¬ng II: Néi n¨ng khÝ lý t­ëng Nguyªn lý nhiÖt ®éng lùc häc  Môc ®Ých ch­¬ng: N¾m v÷ng c¸c ®Æc tr­ng vÒ n¨ng l­îng nhiÖt cña chÊt khÝ. N¾m v÷ng quy luËt cña c¸c qu¸ tr×nh trao ®æi vµ biÕn ho¸ n¨ng l­îng.  Yªu cÇu: HiÓu râ ý nghÜa cña c¸c ®¹i l­îng ®Æc tr­ng vÒ n¨ng l­îng nhiÖt, biÓu thøc m« t¶ qu¸ tr×nh trao ®æi vµ chuyÓn ho¸ n¨ng l­îng. 9
  10. N¾m v÷ng néi dung, c«ng thøc vµ ph¹m vi ¸p dông cña c¸c nguyªn lý vµ ®Þnh luËt ®Ó gi¶i quyÕt c¸c bµi to¸n cã néi dung thùc tÕ. néi n¨ng khÝ lý t­ëng, ®Þnh luËt ph©n bè n¨ng l­îng theo sè bËc tù do I. §Þnh luËt ph©n bè n¨ng l­îng theo bËc tù do: 1. BËc tù do cña ph©n tö.  Kh¸i niÖm: Th«ng sè ®éc lËp cÇn thiÕt ®Ó x¸c ®Þnh vÞ trÝ cña ph©n tö trong kh«ng gian.  VÝ dô: §Ó x¸c ®Þnh vÞ trÝ cña ph©n tö trong kh«ng gian ta cÇn ph¶i biÕt c¸c to¹ ®é x,y,z. C¸c to¹ ®é ®ã ®­îc gäi lµ bËc tù do.  NÕu ph©n tö chØ chuyÓn ®éng tÞnh tiÕn th× sè bËc tù do b»ng 3, cßn nÕu ph©n tö võa tÞnh tiÕn , võa quay th× sè bËc tù do b»ng 5, ph©n tö ®¬n nguyªn tö cã i =3; 2 nguyªn tö i = 5;  3 nguyªn tö i = 6. 2. §Þnh luËt ph©n bè n¨ng l­îng theo sè bËc tù do.  Néi dung: N¨ng l­îng cña ph©n tö khÝ ®­îc ph©n bè ®Òu theo c¸c bËc tù do.  Trong chuyÓn ®éng tÞnh tiÕn c¸c ph©n tö cã sè bËc tù do b»ng 3, ®éng n¨ng trung b×nh 3 chuyÓn ®éng hçn ®én c¸c ph©n tö t­¬ng øng b»ng w d  KT . Tõ ®ã cã thÓ suy ra n¨ng l­îng 2 1 t­¬ng øng víi mçi bËc tù do b»ng KT . 2  KÝ hiÖu sè bËc tù do cña ph©n tö lµi. Ta cã thÓ nhËn xÐt mét c¸ch tæng qu¸t: nÕu ph©n tö cã 1 sè bËc tù do lµ i th× n¨ng l­îng cña ph©n tö sÏ lµ i. KT . 2 II. Néi n¨ng cña khÝ lý t­ëng. 1. Kh¸i niÖm néi n¨ng. i  §éng n¨ng trung b×nh chuyÓn ®éng hçn ®én c¸c ph©n tö : w d  KT . 2  N¨ng l­îng trung b×nh chuyÓn ®éng hçn lo¹n c¸c ph©n tö bao gåm ®éng n¨ng trung b×nh cña chuyÓn ®éng hçn ®én c¸c ph©n tö vµ thÕ n¨ng t­¬ng t¸c w  w d  w tt . i §èi víi khÝ lý t­ëng th× bá qua thÕ n¨ng t­¬ng t¸c gi÷a c¸c ph©n tö do vËy w  w d  KT 2 2. Néi n¨ng cña 1 kmol khÝ lÝ t­ëng. i  Trong mét kmol khÝ bÊt k× ®Òu chøa NA ph©n tö , mçi ph©n tö cã n¨ng l­îng KT . 2  N¨ng l­îng tæng céng cña c¸c ph©n tö cã trong mét kmol ®ã ®­îc gäi lµ néi n¨ng cña mét kmol, kÝ hiÖu lµ UO th× biÓu thøc cña UO lµ: i UO  N A KT (5.1) 2 10
  11. i UO  RT ( R  N A K) (5.2) 2 3. Néi n¨ng cña khèi l­îng khÝ lÝ t­ëng bÊt k×.  Trong khèi l­îng m khÝ lÝ t­ëng bÊt k× cã chøa n kmol khÝ, mçi kmol khÝ cã khèi l­îng  , m do vËy sè kmol cã trong m kg chÊt khÝ lµ: n .   N¨ng l­îng tæng céng cña c¸c ph©n tö cã trong khèi l­îng m ®ã ®­îc gäi lµ néi n¨ng cña khèi l­îng khÝ bÊt k×, kÝ hiÖu lµ U th× biÓu thøc cña U lµ: m i U  n.U O  RT (5.3)  2 4. §é biÕn thiªn néi n¨ng cña khÝ lý t­ëng. XÐt khèi l­îng khÝ bÊt k× ë hai tr¹ng th¸i nhiÖt ®é lµ T1 vµ T2 , néi n¨ng t­¬ng øng víi hai tr¹ng th¸i ®ã lµ U1 vµ U2 . m i Ta cã: U1  RT  2 1 mi U2  RT  2 2 §é biÕn thiªn néi n¨ng gi÷a hai tr¹ng th¸i lµ: mi mi U12  R (T2  T1 )  RT (5.4)  2  2 5. C¸c ®Þnh luËt ph©n bè ph©n tö: Do tÝnh chÊt hçn ®én vµ kh«ng ®ång ®Òu cña c¸c ph©n tö khÝ nªn c¸c ph©n tö khÝ kh«ng hoµn toµn gièng nhau. B»ng ph­¬ng ph¸p thèng kª vµ ph­¬ng ph¸p tÝnh to¸n trªn thùc nghiÖm, ng­êi ta chØ cã thÓ x¸c ®Þnh ®­îc th«ng sè tr¹ng th¸i cã tÝnh x¸c suÊt mµ th«i. D­íi ®©y lµ kÕt qu¶ vÒ sù ph©n bè x¸c suÊt cña mét sè ®¹i l­îng ®Æc tr­ng cho tr¹ng th¸i cña chÊt khÝ. 5.1. §Þnh luËt ph©n bè vËn tèc theo nhiÖt ®é T. 2 KT 2 RT v tb  v XS   m  5.2. §Þnh luËt ph©n bè ¸p suÊt theo ®é cao h. mgh  Ph  Po .e KT ; PO lµ ¸p suÊt t¹i mÆt ®Êt. (5.5) 5.3. §Þnh luËt ph©n bè mËt ®é h¹t theo ®é cao h. mgh  n h  n o .e KT ; nO lµ mËt ®é h¹t t¹i mÆt ®Êt. (5.6) 5.4. Qu·ng ®­êng tù do trung b×nh. 1 KT  2  ; d lµ ®­êng kÝnh ph©n tö (5.7) 2 .d n o 2 .d 2 P 11
  12. C¸c hiÖn t­îng vËn chuyÓn trong chÊt khÝ I. HiÖn t­îng khuÕch t¸n. 1. HiÖn t­îng. Khi mËt ®é phÇn tö chÊt khÝ kh«ng ®ång ®Òu (khèi l­îng riªng kh«ng ®ång ®Òu) th× cã sù ph©n bè l¹i c¸c ph©n tö. 2. Gi¶i thÝch. Do chuyÓn ®éng nhiÖt hçn ®én nªn cã khuynh h­íng lµm cho khèi khÝ ®ång ®Òu ë mäi chç: C¸c ph©n tö ë n¬i cã mËt ®é cao th× x©m nhËp vµo chç cã mËt ®é thÊp víi møc ®é nhiÒu h¬n theo chiÒu ng­îc l¹i 3. §Þnh luËt FÝch. Gäi  m lµ khèi l­îng khÝ vËn chuyÓn qua diÖn tÝch s ,  t lµ thêi gian vËn chuyÓn qua,  lµ khèi l­îng riªng thay ®æi   m = - D .s.t (5.8) x 1 D (hÖ sè K/t) = v 3  2  1 Víi   0 ; dÊu – cho biÕt qu¸ tr×nh va ch¹m theo chiÒu  gi¶m. x x II. HiÖn t­îng néi ma s¸t: 1. HiÖn t­îng. X¶y ra khi cã hai líp khÝ (hay láng) chuyÓn ®éng t­¬ng ®èi víi nhau, vËn tèc cã h­íng song song nh­ng ®é lín kh¸c nhau. 2. Gi¶i thÝch. C¸c ph©n tö chÊt khÝ ë líp nµy khuyÕch t¸n sang líp khÝ kia, chóng va ch¹m vµ truyÒn ®éng l­îng cho nhau xuÊt hiÖn lùc t­¬ng hç gi÷a hai líp khÝ kÐo theo sù thay ®æi vËn tèc. 3. §Þnh luËt Niut¬n. v F = . s (5.9) x 1 v  : hÖ sè nhít,  = v  ; : ®é biÕn thiªn vËn tèc theo h­íng  x 3 x III. HiÖn t­îng dÉn nhiÖt. 1. HiÖn t­îng: NhiÖt ®é truyÒn tõ n¬i cã nhiÖt ®é cao sang n¬i cã nhiÖt ®é thÊp. 2. Gi¶i thÝch. Do chuyÓn ®éng nhiÖt hçn ®én nªn ë nhiÖt ®é cao c¸c ph©n tö khÝ khuÕch t¸n sang chç cã nhiÖt ®é thÊp vµ ng­îc l¹i nh­ng ®éng n¨ng cña c¸c ph©n tö ë chç cã nhiÖt ®é cao lín h¬n, kÕt qu¶ c¸c ph©n tö ë chç cã nhiÖt ®é thÊp cã thªm ®éng n¨ng ( chuyÓn ®éng m¹nh h¬n ) -> nhiÖt ®é cao lªn. 3. §Þnh luËt Furiª. T Q   .s.t (5.10) x Q: nhiÖt l­îng truyÒn qua diÖn tÝch  s 12
  13. T : ®é biÕn thiªn theo h­íng x  : hÖ sè tû lÖ phô thuéc vµo b¶n chÊt vµ tr¹ng th¸i cña khèi khÝ nguyªn lý thø nhÊt nhiÖt ®éng lùc häc I. N¨ng l­îng, nhiÖt vµ c«ng. 1. N¨ng l­îng.  N¨ng l­îng lµ ®¹i l­îng ®Æc tr­ng cho møc ®é vËn ®éng cña vËt chÊt, ë mçi tr¹ng th¸i kh¸c nhau cña vËt chÊt th× d¹ng vËn ®éng cña hÖ còng kh¸c nhau. Khi tr¹ng th¸i cña hÖ thay ®æi th× n¨ng l­îng cña hÖ còng thay ®æi theo, do vËy n¨ng l­îng lµ hµm cña tr¹ng th¸i.  Trong nhiÖt ®éng häc ta chØ kh¶o s¸t n¨ng l­îng ë bªn trong hÖ, n¨ng l­îng ®ã chÝnh b»ng néi n¨ng cña hÖ. 2. NhiÖt vµ c«ng.  NhiÖt vµ c«ng cïng lµ th­íc ®o møc n¨ng l­îng truyÒn tõ hÖ nµy cho hÖ kh¸c, hoÆc tõ d¹ng n¨ng l­îng nµy sang d¹ng n¨ng l­îng kh¸c. Ta cã thÓ biÓu thÞ hai ®¹i l­îng c«ng vµ nhiÖt th«ng qua m« h×nh trao ®æi n¨ng l­îng sau: (h×nh vÏ 5.1) m« h×nh truyÒn n¨ng l­îng cña hÖ A cho hÖ B Ph­¬ng tiÖn: Lùc (N. l­îng ®o b»ng c«ng) HÖ B HÖ A Ph­¬ng tiÖn: NhiÖt ®é (N. l­îng ®o b»ng NhiÖt l­îng) (h×nh 5.1) C«ng vµ nhiÖt l­îng lµ hai ®¹i l­îng kh¸c nhau nh­ng nã t­¬ng ®­¬ng nhau, vÝ dô muèn lµm cho mét khèi l­îng khÝ nãng lªn ( néi n¨ng t¨ng), ta cã thÓ tiÕn hµnh theo hai c¸ch: c¸ch thø nhÊt lµ truyÒn nhiÖt ®é, c¸ch thø hai lµ dïng lùc nÐn khÝ. II. Nguyªn lý thø nhÊt. 1. BiÓu thøc. Néi n¨ng cña hÖ lµ mét hµm cña tr¹ng th¸i, muèn thay ®æi néi n¨ng cã nhiÒu c¸ch. Gi¶ sö néi n¨ng ban ®Çu cña hÖ lµ U1 , sau khi hÖ nhËn n¨ng l­îng tõ hÖ kh¸c truyÒn cho võa d­íi d¹ng c«ng A12, võa d­íi d¹ng nhiÖt Q12, th× néi n¨ng cña hÖ kh¶o s¸t t¨ng lªn lµ U2. Theo nguyªn lý b¶o toµn vµ chuyÓn ho¸ n¨ng l­îng, ta viÕt ®­îc: U  U  U  A  Q (5.11) 12 2 1 12 12 Víi c¸ch viÕt ®ã, ta cã mét sè quy ­íc nh­ sau: + §é biÕn thiªn néi n¨ng U12 > 0 nÕu néi n¨ng t¨ng, U12 < 0 nÕu néi n¨ng gi¶m. + C«ng trao ®æi A12 > 0 nÕu hÖ nhËn c«ng, A12 < 0 nÕu hÖ truyÒn c«ng. + NhiÖt l­îng trao ®æi Q12 > 0 nÕu hÖ nhËn nhiÖt l­îng, Q12 < 0 nÕu hÖ truyÒn nhiÖt l­îng. 13
  14. 2. Ph¸t biÓu néi dung. Trong qu¸ tr×nh biÕn thiªn tr¹ng th¸i, ®é biÕn thiªn néi n¨ng cña hÖ b»ng tæng c«ng vµ nhiÖt cña hÖ ®· trao ®æi trong qu¸ tr×nh ®ã. 3. HÖ qu¶ cña nguyªn lý thø nhÊt.  Qu¸ tr×nh biÕn ®æi tr¹ng th¸i theo mét chu tr×nh kÝn: U1 = U2, do vËy A  Q  0  A   Q 12 12 12 12 Nh­ vËy: hÖ nhËn c«ng ®Ó truyÒn nhiÖt, hoÆc hÖ nhËn nhiÖt ®Ó thùc hiÖn c«ng. §iÒu nµy cho biÕt: muèn sinh c«ng th× hÖ ph¶i nhËn nhiÖt l­îng tõ ngoµi vµo. Kh«ng cã m¸y thùc hiÖn c«ng mµ kh«ng cÇn tiªu thô n¨ng l­îng ( kh«ng cã ®éng c¬ vÜnh cöu lo¹i 1)  XÐt hÖ c« lËp gåm hai vËt kh«ng trao ®æi c«ng vµ nhiÖt víi bªn ngoµi: Q12 = A12 = 0, do vËy U12 = 0 NÕu hÖ kh«ng sinh c«ng th× Q1 + Q2 = 0 ta cã Q1 = - Q2 Nh­ vËy: nÕu vËt nµy to¶ nhiÖt th× vËt kia ph¶i thu nhiÖt ” NhiÖt l­îng to¶ ra b»ng nhiÖt l­îng thu vµo trong mét hÖ c« lËp”. III. øng dông nguyªn lý thø nhÊt: 1. Qu¸ tr×nh c©n b»ng.  Tr¹ng th¸i c©n b»ng: Lµ tr¹ng th¸i trong ®ã mäi th«ng sè cña hÖ ®­îc x¸c ®Þnh vµ tån t¹i kh«ng ®æi.  Qu¸ tr×nh c©n b»ng: Lµ mét qu¸ tr×nh biÕn ®æi, gåm mét chuçi liªn tiÕp c¸c tr¹ng th¸i c©n b»ng. Thùc tÕ kh«ng cã qu¸ tr×nh c©n b»ng, v× trong qu¸ tr×nh biÕn ®æi: khi tr¹ng th¸i c©n b»ng tr­íc ®ã bÞ ph¸ vì th× tr¹ng th¸i c©n b»ng sau l¹i ®ù¬c thiÕt lËp. Tuy nhiªn nÕu qu¸ tr×nh biÕn ®æi x¶y ra rÊt chËm th× cã thÓ xem nh­ mét qu¸ tr×nh c©n b»ng.  C«ng trao ®æi cña hÖ trong qu¸ tr×nh c©n b»ng: XÐt hÖ lµ mét khèi l­îng khÝ nhÊt ®Þnh ®ùng trong xi lanh ®­îc giíi h¹n bëi pÝt t«ng, biÕn ®æi tr¹ng th¸i theo qu¸ tr×nh c©n b»ng. + NÕu khÝ ®ã gi·n në: ®é lín c«ng trong mét sù dÞch chuyÓn nhá cña pÝt t«ng dA  F.dl  P.S.dl  P.dV . §Ó võa tho¶ m·n dV > 0 (do gi·n në), võa tho¶ m·n dA < 0 (hÖ nhËn c«ng) th× viÕt biÓu thøc gi¸ trÞ ®¹i sè c«ng trong qu¸ tr×n nÐn ®ã lµ dA  P.dV . + NÕu khÝ ®ã bÞ nÐn: ®é lín c«ng trong mét sù dÞch chuyÓn nhá cña pÝt t«ng dA  F.dl  P.S.dl  P.dV . §Ó võa tho¶ m·n dV< 0 (do bÞ nÐn), võa tho¶ m·n dA > 0 (hÖ nhËn c«ng) th× viÕt biÓu thøc gi¸ trÞ ®¹i sè c«ng trong qu¸ tr×n nÐn ®ã lµ dA  P.dV . VËy xÐt mét c¸ch tæng qu¸t, biÓu thøc gi¸ trÞ ®¹i sè c«ng trong mét qu¸ tr×nh c©n b»ng lµ: A12   dA    P.dV (5.12) 12 12 P lµ c«ng trao ®æi trong qu¸ tr×nh, nÕu lµ qu¸ tr×nh ®¼ng ¸p th× cã thÓ ®­a ra ngoµi dÊu tÝch ph©n, nÕu qu¸ tr×nh P thay ®æi th× ph¶i biÓu diÔn P nh­ lµ mét hµm sè theo T hoÆc theo V. lt lo lo l dl dl ( h×nh 5.2) : qu¸ tr×nh nÐn) 14 ( h×nh 5.3) : qu¸ tr×nh gi·n)
  15.  NhiÖt l­îng trao ®æi cña hÖ trong qu¸ tr×nh c©n b»ng: Gäi dQ lµ nhiÖt luîng mµ hÖ trao ®æi víi bªn ngoµi gi÷a hai tr¹ng th¸i, th× biÓu thøc tÝnh nhiÖt l­îng trao ®æi cña hÖ lµ: + dQ  C.m Víi C lµ nhiÖt dung cña hÖ cã khèi l­îng m. * * + dQ  C .m(T  T )  C .m.dT Víi C* lµ nhiÖt dung riªng cña hÖ. 2 1 m m + dQ  C .( T  T )  C .dT Víi C lµ nhiÖt dung mol ph©n tö cña hÖ.   2 1   NÕu xÐt trong mét qu¸ tr×nh phøc t¹p tõ tr¹ng th¸i 1 ®Õn tr¹ng th¸i 2th×: m Q   dq  C  dT (5.13) 12 12   12 2. øng dông nguyªn lý thø nhÊt vµo c¸c qu¸ tr×nh biÕn ®æi.  Qu¸ tr×nh ®¼ng tÝch: P + §å thÞ biÓu diÔn qu¸ tr×nh ( h×nh vÏ 5.4 ) N + ThÓ tÝch kh«ng ®æi V1 = V2 , ¸p suÊt vµ nhiÖt ®é thay ®æi.P2 ·T2 P1 P2 + Ph­¬ng tr×nh tr¹ng th¸i:  T1 T2 P1 ·T1 M V (h×nh 5.4) + C«ng trong qu¸ tr×nh: tõ tr¹ng th¸i 1®Õn tr¹ng th¸i 2: 2 A12=   PdV  0 do dV=0 1 m iR + §é biÕn thiªn néi n¨ng (khÝ lý t­ëng): U  T  2 + NhiÖt l­îng trao ®æi: ¸p dông nguyªn lý thø nhÊt  U = Q + A = Q , v× A = 0 m m iR mçi vÕ cña ®¼ng thøc trªn lµ: Q  C .T vµ U  .T  V  2 do ®ã biÓu thøc nhiÖt dung mol ph©n tö trong qu¸ tr×nh ®¼ng tÝch lµ: iR P CV  (5.14) 2  Qu¸ tr×nh ®¼ng ¸p: T1 T2 P M N + §å thÞ biÓu diÔn qu¸ tr×nh ( h×nh vÏ 5.5) + ¸p suÊt kh«ng ®æi V1 = V2 , thÓ tÝch vµ nhiÖt ®é thay ®æi. V V1 V2 V1 V2 + Ph­¬ng tr×nh tr¹ng th¸i:  (h×nh 5.5) T1 T2 + C«ng trong qu¸ tr×nh: tõ tr¹ng th¸i 1 ®Õn tr¹ng th¸i V2 A 12    PdV  (PV2  PV1 ) V1 m m cã PV1  RT1 vµ PV2  RT2   15
  16. m m A12   R (T2  T1 )   R .T   m iR + §é biÕn thiªn néi n¨ng (khÝ lý t­ëng): U  T  2 + NhiÖt l­îng trao ®æi: ¸p dông nguyªn lý thø nhÊt U  A  Q  Q  U  A m iR  m  m  iR  Thay vµo Q  U  A  T    .R .T     R T  2     2  m MÆt kh¸c Q C T  P §ång nhÊt hai biÓu thøc trªn, rót ra nhiÖt dung mol ph©n tö trong qu¸ tr×nh ®¼ng ¸p: iR C  R (5.15) P1 ·M P 2  Qu¸ tr×nh ®¼ng nhiÖt: + §å thÞ biÓu diÔn qu¸ tr×nh ( h×nh vÏ ) + NhiÖt ®é kh«ng ®æi T1 = T2 , ¸p suÊt vµ thÓ tÝch thay ®æi. P2 N + Ph­¬ng tr×nh tr¹ng th¸i: P1 V1  P2 V2  PV · + C«ng trong qu¸ tr×nh: tõ tr¹ng th¸i 1®Õn tr¹ng th¸i 2: V V2 m dV m dV V1 V2 A 12    P.dV    RT.   RT  12 12  V  V1 V (h×nh 5.6) (5.16) m V A 12   RT. ln 2  V1 m iR + §é biÕn thiªn néi n¨ng (khÝ lý t­ëng): U  T  0 v× T = const  2 + NhiÖt l­îng trao ®æi: ¸p dông nguyªn lý thø nhÊt U  A  Q  0  Q   A m V + NhiÖt l­îng trao ®æi: Q12  A  RT. ln 2 (5.17)  V1  Qu¸ tr×nh ®o¹n nhiÖt: + §Þnh nghÜa: lµ qu¸ tr×nh hÖ biÕn ®æi nh­ng kh«ng trao ®æi nhiÖt víi bªn ngoµi. + NhiÖt l­îng trao ®æi Q = 0. + XÐt trong qu¸ tr×nh nhá: dU = dA + dQ = dA (5.18) m iR m Trong ®ã: dU  . dT  .C V .dT vµ dA   P.dV  2  m mRT dV   .C V .dT  -PdV    V  Thay vµo (5.18), ta cã:  T2 V2  dT  R dV  0   dT  R  dV  T CV V T1 T C V V1 V 16
  17.  R R ln T  ln T1  C ln V  C ln V1  0 V V   R R *  ln T  C ln V  ln T1  C ln V1  const  V V LÊy tÝch ph©n vµ biÕn ®æi:  R R  ( )  ( )  ln  T.V C V   const **  T.V C V  const        R C  CV CP   P  1   1  CV CV CV V¬Ý  lµ hÖ sè Poat x«ng, thay vµo trªn ta ®­îc ph­¬ng tr×nh theo V,T: T.V (  1)  const ***  (5.19)  T1 .V1(  1)  T2 .V2 (  1)  .........  T.V (  1) PV Ta thay T  vµo (5.19) vµ biÕn ®æi ta ®­îc ph­¬ng tr×nh theo P,V: mR  (  1)  T.V  PV.V (  1)  const ***  mR (5.20)  P.V   const  P .V   P .V   ................  P.V   1 1 2 2 + C«ng trong qu¸ tr×nh ®o¹n nhiÖt: V2 Theo biÓu thøc tÝnh c«ng: A    P.dV (5.21) V1 Qu¸ tr×nh ®o¹n nhiÖt ¸p suÊt thay ®æi do vËy ta ph¶i biÓu diÔn P nh­ lµ mét hµm sè cña thÓ tÝch Vtr­íc khi thùc hiÖn phÐp tÝch ph©n. Trong qu¸ tr×nh ®o¹n nhiÖt th× rót P tõ c«ng thøc (5.20):  PV P 1 1 V Thay vµo biÓu thøc tÝnh c«ng (5.21) ta tiÕp tôc biÕn ®æi sau: V2   dV  V 1  V2 A  P1V1    P1V1 l  V1 V (1   ) V1  1 A  (   1)   1  P2 V2 .V2  P1V1 .V1   1  (5.22)   P2 .V2  P1 .V1  A   (  1) x¸c suÊt to¸n, x¸c suÊt nhiÖt ®éng Kh¸i niÖm Entr«pi (Angtr«pi) I. X¸c suÊt to¸n häc: 1. Kh¸i niÖm.  BiÕn cè ngÉu nhiªn: Lµ c¸c hiÖn t­îng hay sù viÖc x¶y ra ngoµi ý thøc cña con ng­êi. 17
  18.  §Æc tr­ng cho kh¶ n¨ng x¶y ra mét biÕn cè nhiÒu hay Ýt, ng­êi ta ®­a ra kh¸i niÖm x¸c suÊt. VÝ dô khi gieo con sóc s¾c, ta kh«ng thÓ biÕt ®­îc mÆt nµo sÏ xuÊt hiÖn trong mét lÇn s¾p gieo, ch¼ng h¹n kh¶ n¨ng xuÊt hiÖn mÆt sè 6 nhiÒu h¬n, ta nãi x¸c suÊt lín vµ ng­îc l¹i. 2. C¸c quy t¾c.  Quy t¾c céng: + Quy t¾c: NÕu hai biÕn cè ngÉu nhiªn a vµ b x¶y ra kh«ng ®ång thêi mét lóc, cã x¸c suÊt lÇn l­ît lµ wa vµ wb , th× x¸c suÊt ®Ó xuÊt hiÖn hoÆc biÕn cè a hoÆc biÕn cè b lµ w(hoÆc a hoÆcb) tu©n theo c«ng thøc: w(hoÆc a hoÆcb) = wa + wb (5.23) + VÝ dô1: Gieo con sóc s¾c n lÇn (n >>) th× thÊy sè lÇn xuÊt hiÖn tõng mÆt lµ b»ng nhau vµ b»ng n/6, ta nãi r»ng kh¶ n¨ng ®Ó xuÊt hiÖn mét mÆt nµo ®ã chiÕm tØ lÖ b»ng 1/6 trong tæng c¸c lÇn gieo( tøc lµ x¸c suÊt ®Ó xuÊt hiÖn mét mÆt nµo ®ã b»ng 1/6). VËy kh¶ n¨ng ®Ó xuÊt hiÖn hoÆc mÆt nµy hoÆc mÆt kia ch¾c ch¾n sÏ nhiÒu h¬n, hay x¸c suÊt lín h¬n vµ b»ng 1/6+1/6 =1/3.  Quy t¾c nh©n x¸c suÊt: + Quy t¾c: NÕu hai biÕn cè ngÉu nhiªn a vµ b x¶y ra ®éc lËp víi nhau, cã x¸c suÊt lÇn l­ît lµ wa vµ wb , th× x¸c suÊt ®Ó xuÊt hiÖn ®ång thêi hai biÕn cè a vµ b lµ w(avµb) tu©n theo c«ng thøc: w(avµb))= wa . wb (5.24) + VÝ dô2: Gieo ®ång thêi hai con sóc s¾c, mçi con n lÇn (n >>) th× thÊy sù xuÊt hiÖn ®ång thêi mÆt 6 cña con sóc s¾c bªn nµy víi sù xuÊt hiÖn mÆt 3 cña con sóc s¾c bªn kia lµ kh«ng ¶nh h­ëng lÉn nhau, kh¶ n¨ng ®Ó xuÊt hiÖn ®ång thêi mÆt 6 cña con sóc s¾c bªn nµy vµ mÆt 3 cña con sóc s¾c bªn kia sÏ Ýt h¬n so víi kh¶ n¨ng vÒ sù xuÊt hiÖn tõng mÆt cña mét con sóc s¾c, tøc lµ ®· nãi tíi x¸c suÊt nhá h¬n vµ thùc nghiÖm ®· x¸c ®Þnh b»ng 1/6.1/6 =1/36. II. X¸c suÊt nhiÖt ®éng. 1. Vi th¸i vµ vÜ th¸i. + VÝ dô 1: Hai ph©n tö a,b ®ùng trong mét nöa b×nh cã ng¨n c¸ch víi nöa b×nh bªn kia kh«ng chøa ph©n tö nµo b»ng mét v¸ch ng¨n. Khi bá v¸ch ng¨n, ta liÖt kª ®­îc 4 kiÓu ph©n bè hÖ hai ph©n tö ( nh­ h×nh vÏ 5.7) vµ cã c¸c nhËn xÐt nh­ sau: - Tæng sè cã 4 kiÓu ph©n bè ph©n tö lµ 1, 2, 3, 4. Mçi kiÓu ph©n bè ®ã lµ mét tr¹ng th¸i ngÉu nhiªn cña hÖ, vµ gäi lµ mét vi th¸i( tr¹ng th¸i vi m«). - NÕu kh«ng ®¸nh dÊu tõng ph©n tö(tøc lµ kh«ng ph©n biÖt gi÷a c¸c ph©n tö) th× chØ cã 3 kiÓu ph©n bè lµ I , II , III. Mçi kiÓu ph©n bè sÏ t­¬ng øng víi mét hoÆc nhiÒu tr¹ng th¸i ngÉu ab 1 nhiªn cña hÖ, ®­îc gäi lµ mét vÜ th¸i (tr¹ng th¸i vÜ m«). I - Theo lý thuyÕt x¸c suÊt to¸n th× : vÜ th¸i I vµ II Ýt kh¶ ab 2 n¨ng x¶y ra(chØ chøa cã mét vi th¸i); vÜ th¸i III kh¶ n¨ng x¶y II ra nhiÒu h¬n ( chøa hai vi th¸i). a b 3 + VÝ dô 2: Bèn ph©n tö a,b,c,d ®ùng trong mét nöa b×nh cã ng¨n c¸ch víi nöa b×nh bªn kia kh«ng chøa ph©n tö nµo b»ng b a 4 III (h×nh 5.7) mét v¸ch ng¨n. Khi bá v¸ch ng¨n, ta liÖt kª ®­îc16 vi th¸i cã trong 5 vÜ th¸i (nh­ h×nh vÏ 5.8), vµ cã c¸c nhËn xÐt kh¸i qu¸t abcd 1 18 abcd 2 I abc d 3 II
  19. nh­ sau: - HÖ cµng nhiÒu ph©n tö th× møc ®é hçn ®én cña hÖ cµng cao, ®ång thêi hÖ cµng cã nhiÒu vi th¸i. Nh­ vËy sè vi th¸i cña hÖ phô thuéc vµo møc ®é hçn ®én cña hÖ. - Kh¶ n¨ng ®Ó hÖ tån t¹i ë mét vÜ th¸i (mét tr¹ng th¸i vÜ m«) nhiÒu hay Ýt, hoµn toµn phô thuéc vµo sè vi th¸i chøa trong vÜ th¸i ®ã: NÕu sè vi th¸i cã chøa trong mét vÜ th¸i cµng lín th× vÜ th¸i ®ã cµng dÔ tån t¹i, vµ ng­îc l¹i. Trë l¹i vÝ dô 2 ta thÊy: VÜ th¸i Vcã chøa sè vi th¸i lín nhÊt b»ng 6, râ rµng kh¶ n¨ng hÖ tån t¹i ë vÜ th¸i nµy nhiÒu h¬n so víi c¸c vÜ th¸i kh¸c, ®ång thêi hai vÜ th¸i I vµII, mçi vÜ th¸i chøa sè vi th¸i b»ng 1 nªn c¸c vÜ th¸i nµy rÊt khã x¶y ra. 2. X¸c suÊt nhiÖt ®éng.  ý nghÜa x¸c suÊt nhiÖt ®éng: §Æc tr­ng cho kh¶ n¨ng ®Ó x¶y ra mét biÕn cè ngÉu nhiªn nhiÒu hay lµ Ýt, ta dïng x¸c suÊt ®Ó ®¸nh gi¸ møc ®é. Trong nhiÖt ®éng häc th× kh¶ n¨ng lµm xuÊt hiÖn mét vÜ th¸i cña hÖ sÏ ®­îc ®¸nh gi¸ b»ng x¸c suÊt nhiÖt ®éng. VËy: x¸c suÊt nhiÖt ®éng ®Æc tr­ng cho kh¶ n¨ng tån t¹i mét vÜ th¸i cña hÖ.  §Þnh nghÜa: Tõ c¸c vÝ dô trªn thÊy r»ng: NÕu sè vi th¸i cã chøa trong mét vÜ th¸i cµng lín th× vÜ th¸i ®ã cµng dÔ tån t¹i, vµ ng­îc l¹i. MÆt kh¸c kh¶ n¨ng tån t¹i cña mét vÜ th¸i cã liªn quan tíi sè vi th¸i chøa trong vÜ th¸i ®ã. Do vËy: Sè vi th¸i chøa trong mét vÜ th¸i gäi lµ x¸c suÊt nhiÖt ®éng.  KÝ hiÖu x¸c suÊt: NÕu gäi sè vi th¸i chøa trong mét vÜ th¸i b»ng w, th× x¸c suÊt ®Ó tån t¹i vÜ th¸i lµ w . Trªn c¬ së ®ã w cßn ®Æc tr­ng cho møc ®é hçn ®én cña hÖ, nã lµ hµm sè cña tr¹ng th¸i.  Ph©n biÖt víi x¸c suÊt to¸n häc: ë vÝ dô1, nÕu xÐt vÒ mÆt to¸n häc th× c¸c vi th¸i 3; 4 cã x¸c suÊt lÇn l­ît lµ w3 = w4 = 1/4, do vËy x¸c suÊt ®Ó tån t¹i hoÆc vi th¸i 3 hoÆc vi th¸i 4 (tøc lµ tån t¹i vÜ th¸i III) lµ w III = whoÆc3hoÆc4 = w 3 + w 4 = 1/2. Nh­ng trong nhiÖt ®éng häc th× x¸c suÊt nhiÖt ®éng w III = 2. Thùc tÕ trong mét khèi khÝ, sè ph©n tö cña hÖ lµ rÊt lín, x¸c suÊt nhiÖt ®éng w cßn cã trÞ sè lín h¬n rÊt nhiÒu. VËy: kh¸c víi x¸c suÊt to¸n häc lu«n lu«n  1, th× x¸c suÊt nhiÖt ®éng cã trÞ sè lµ w >>1. III. Entr«pi. 1. BiÓu thøc Entr«pi. 19
  20.  X¸c suÊt nhiÖt ®éng w ®Æc tr­ng cho møc ®é hçn lo¹n cña c¸c vÜ th¸i trong toµn hÖ, nã lµ hµm cña tr¹ng th¸i.  Khi xÐt mét hÖ phøc t¹p bao gåm mét sè phÇn ®éc lËp víi nhau, tõng phÇn cã x¸c suÊt nhiÖt ®éng lÇn l­ît lµ w1 ,w2 ,.....wi...wn. th× x¸c suÊt tån t¹i mét vÜ th¸i cña toµn hÖ sÏ ®­îc tÝnh b»ng quy t¾c nh©n, tøc lµ whÖ=w1.w2....wn ( mét con sè qu¸ lín)  §Ó ®Æc tr­ng cho møc ®é hçn lo¹n cña hÖ phøc t¹p, ®ång thêi còng vÉn ®ãng vai trß lµ hµm cña tr¹ng th¸i, mµ phÐp biÓu diÔn ®¬n gi¶n h¬n, nhµ b¸c häc B«nz¬man ®· ®­a ra hµm ®Æc tr­ng míi lµ hµm sè entr«pi S vÜ m« nµo ®ã ch¼ng h¹n w l¹i cã trÞ sè rÊt lín. §Æc tr­ng cho møc ®é thuËn tiÖn trong viÖc m« t¶ tr¹ng th¸i.  BiÓu thøc hµm sè entr«pi S: S = k.lnW (5.25) (k lµ h»ng sè B«nzman, W lµ x¸c suÊt nhiÖt ®éng) 2. C¸c tÝnh chÊt Entr«pi. + Entr«pi S lµ mét hµm sè cña tr¹ng th¸i, nã kh«ng phô thuéc vµo qu¸ tr×nh ®­a hÖ tõ tr¹ng th¸i nµy qua tr¹ng th¸i kh¸c. Do vËy ta cã thÓ thay thÕ viÖc tÝnh ®é biÕn thiªn S cña hÖ gi÷a hai tr¹ng th¸i trong nh÷ng qu¸ tr×nh bÊt thuËn nghÞch b»ng viÖc tÝnh ®é biÕn thiªn S cña hÖ gi÷a hai tr¹ng th¸i trong nh÷ng qu¸ tr×nh thuËn nghÞch gi÷a cïng hai tr¹ng th¸i ®ã. + Entr«pi S lµ mét ®¹i l­îng cã tÝnh chÊt céng. Chøng minh tÝnh chÊt nµy nh­ sau: Tõ trªn: S = k.lnW víi whÖ = w1.w2....wn thay vµo ta ®­îc: S = k.ln w1.w2....wn = k.ln w1 + k.ln w2 + k.ln w3 +........ + k.ln wn Suy ra: S = S1 + S2 + S3+........+ Sn = Si (5.26). Cong thøc (5.26) cho ta x¸c ®Þnh entr«pi S cña hÖ phøc tËp gåm nhiÒu phÇn hoÆc gåm nhiÒu qu¸ tr×nh biÕn ®æi. nguyªn lý thø hai nhiÖt ®éng lùc häc I. C«ng thøc liªn hÖ gi÷a S, Q vµ T. 1. C«ng thøc. Mét hÖ cã nhiÖt ®é T, khi trao ®æi nhiÖt víi bªn ngoµi lµ Q th× ®é biÕn thiªn entr«pi cña hÖ lµ S. Theo lÝ thuyÕt thèng kª ®· chøng minh ®­îc c«ng thøc liªn hÖ sau: Q S  (5.27) T VÒ mÆt ®Þnh tÝnh c«ng thøc (5.27) cho ta biÕt: NhiÖt l­îng Q cña hÖ nhËn ®­îc sÏ lµm t¨ng møc chuyÓn ®éng nhiÖt c¸c ph©n tö, tr¹ng th¸i hçn lo¹n cña sù ph©n bè c¸c vi th¸i t¨ng lªn, entr«pi cña hÖ sÏ t¨ng lªn mét l­îng S tØ lÖ víi Q. NÕu nhiÖt ®é cña hÖ cao th× nhiÖt l­îng Q cña hÖ nhËn ®­îc sÏ Ýt lµm thay ®æi tr¹ng th¸i hçn lo¹n cña hÖ, x¸c suÊt nhiÖt ®éng W sÏ t¨ng Ýt, do ®ã S cña hÖ nhá. Ng­îc l¹i nÕu nhiÖt ®é cña hÖ thÊp th× nhiÖt l­îng Q cña hÖ nhËn ®­îc sÏ lµm tr¹ng th¸i hçn lo¹n cña hÖ thay ®æi nhiÒu, x¸c suÊt nhiÖt ®éng W sÏ t¨ng nhiÒu, do ®ã S cña hÖ lín. 2. §¬n vÞ. Tõ biÓu thøc (5.27) ta nhËn thÊy thø nguyªn cña entr«pi S lµ Jun/®é (J/®é). 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2