
3
mở đầu
Tổ hợp như là một lĩnh vực của toán học rời rạc, xuất hiện vào đầu
thế kỷ 17 bằng một loạt các công trình nghiên cứu của các nhà toán học xuất
sắc như Pascal, Fermat, Leibnitz, Euler.... Mặc dù vậy, tổ hợp vẫn là lĩnh vực
mờ nhạt và ít được chú ý tới trong quãng thời gian hơn hai thế kỷ. Tình thế
bắt đầu đổi khác khi xuất hiện các máy tính và cùng với nó là sự phát triển
của toán hữu hạn.
Hiện nay lý thuyết tổ hợp được áp dụng trong nhiều lĩnh vực khác nhau
như lý thuyết số, hình học hữu hạn, quá trình ngẫu nhiên, thống kê xác suất,...
Hướng nghiên cứu của luận văn là xây dựng các số tổ hợp cơ bản được
hình thành từ kết quả của một số bài toán đếm. Chúng tôi xét bài toán phân
hoạch tập hợp hữu hạn cùng với các điều kiện được đặt thêm vào. Trên cơ sở
đó luận văn đi đến một số kết quả mới về các số tổ hợp có liên quan đến số
các phân hoạch.
Luận văn được chia làm 4 chương:
Chương 1: Một số bài toán đếm và các số tổ hợp. Chương này
nhắc lại một số quy tắc và bài toán đếm cơ bản. Thông qua một số bài toán
đếm, luận văn xây dựng các số tổ hợp cơ bản. Hơn nữa, thông qua bài toán
phân hoạch tập hợp, chúng tôi tìm được các số tổ hợp mới cũng như mối liên
hệ giữa các số tổ hợp cơ bản đã biết với các số tổ hợp mới.
Chương 2: Phương pháp đếm dùng hàm sinh. Nội dung chính của
chương là giới thiệu phương pháp đếm dùng hàm sinh thông thường và hàm
sinh mũ. Với phương pháp này, luận văn giải quyết một số bài toán đếm cũng
như thiết lập được công thức tính cho các số tổ hợp quan trọng (số xáo trộn
tổng quát Dn, số Fibonaci Fn, số Bell Bn,...). Hơn nữa, chúng tôi cũng đưa ra
hàm sinh mũ cho các số tổ hợp mới vừa tìm được trong Chương 1.