intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

On the conditions for the complete convergence in mean for double sums of independent random elements in banach spaces

Chia sẻ: Tony Tony | Ngày: | Loại File: PDF | Số trang:12

21
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

In this paper, we establish the condition for convergence of X∞ m=1 X∞ n=1 1 mn E  kSmnk (mn) 1/p q for double arrays of independent random elements in Banach spaces following the type proposed by Li, Qi and Rosalsky.

Chủ đề:
Lưu

Nội dung Text: On the conditions for the complete convergence in mean for double sums of independent random elements in banach spaces

Trường Đại học Vinh<br /> <br /> Tạp chí khoa học, Tập 46, Số 2A (2017), tr. 31-42<br /> <br /> ON THE CONDITIONS FOR THE COMPLETE CONVERGENCE<br /> IN MEAN FOR DOUBLE SUMS OF INDEPENDENT RANDOM<br /> ELEMENTS IN BANACH SPACES<br /> Vu Thi Ngoc Anh (1) , Nguyen Thi Thuy (2)<br /> of Mathematics, Hoa Lu University, Ninh Binh<br /> 2 Teacher of Mathematics, Thanh Chuong 3 High School, Nghe An.<br /> Received on 19/4/2017, accepted for publication on 20/10/2017<br /> 1 Department<br /> <br /> Abstract: In this paper, we establish the condition for convergence of<br /> <br /> <br /> ∞ X<br /> ∞<br /> X<br /> 1<br /> kSmn k q<br /> E<br /> for double arrays of independent random elements<br /> mn<br /> (mn)1/p<br /> m=1 n=1<br /> in Banach spaces following the type proposed by Li, Qi and Rosalsky [6].<br /> 1. Introduction and Preliminaries<br /> Throughout this paper, let (B, k.k) be a real separable Banach space. Li, Qi and Rosalsky<br /> [6] extended Theorem 2.4.1 in [1], Theorem 5 in [2] and Theorems 2.1 and 2.2 in [4] as follows:<br /> Let 0 < p < 2 and q > 0. Let {Xn , n ≥ 1} be a sequence of independent copies of a<br /> B-valued random element X. Set<br /> Sn = X1 + X2 + · · · + Xn , n ≥ 1.<br /> Then<br /> <br /> <br /> <br /> ∞<br /> X<br /> 1<br /> kSn k q<br /> E<br /> t) dt < ∞,<br /> <br /> if q < p<br /> <br /> <br /> <br /> EkXkp ln(kXk + 1) < ∞,<br /> <br /> <br /> <br /> EkXkq < ∞,<br /> <br /> if q = p<br /> if q > p<br /> <br /> 0<br /> <br /> Based on that idea, we establish the condition for convergence of<br /> <br /> <br /> ∞<br /> ∞ X<br /> X<br /> 1<br /> kSmn k q<br /> E<br /> for double arrays of independent random elements in Banach<br /> 1/p<br /> mn<br /> (mn)<br /> m=1 n=1<br /> spaces.<br /> 1)<br /> <br /> Email: anhyk86@gmail.com (V. T. N. Anh).<br /> <br /> 31<br /> <br /> Vu Thi Ngoc Anh, Nguyen Thi Thuy/ On the conditions for the complete convergence in mean...<br /> <br /> Throughout this paper, the symbol C denotes a generic constant (0 < C < ∞) which<br /> might be different in different appearances. For a matrix A = (xij )m×n with the entries<br /> xij ∈ B, 1 ≤ i ≤ m, 1 ≤ j ≤ n, we denote<br /> π(A) = π ((xij )m×n ) = (x11 , x12 , . . . , x1n , . . . , xm1 , xm2 , . . . , xmn ) ∈ B mn .<br /> For a, b ∈ R, max{a, b} will be denoted by a ∨ b, min{a, b} will be denoted by a ∧ b.<br /> 2. Main Results<br /> Theorem 2.1. Let 0 < p < 2 and q > 0. Let {Xmn , m ≥ 1, n ≥ 1} be a double array of<br /> independent copies of a B-valued random element X. Set<br /> Smn =<br /> <br /> m X<br /> n<br /> X<br /> <br /> Xkl , m ≥ 1, n ≥ 1.<br /> <br /> k=1 l=1<br /> <br /> Then<br /> <br /> <br /> <br /> ∞ X<br /> ∞<br /> X<br /> 1<br /> kSmn k q<br /> E<br /> p<br /> <br /> (3)<br /> <br /> The following three lemmas are used to prove Theorem 2.1.<br /> Lemma 2.1. Let {cmn , m ≥ 1, n ≥ 1} be a double array of nonnegative real numbers.<br /> Then<br /> i) For all k ≥ 1, l ≥ 1, we have<br /> k X<br /> l<br /> X<br /> <br /> cij ≤<br /> <br /> i=1 j=1<br /> <br /> ∞ X<br /> ∞<br /> X<br /> <br /> cij .<br /> <br /> (4)<br /> <br /> ckl as n → ∞.<br /> <br /> (5)<br /> <br /> i=1 j=1<br /> <br /> ii) We have<br /> n X<br /> n<br /> X<br /> <br /> ckl %<br /> <br /> k=1 l=1<br /> <br /> ∞ X<br /> ∞<br /> X<br /> k=1 l=1<br /> <br /> iii) If {amn , m ≥ 1, n ≥ 1} is a double array of positive constants such that<br /> <br /> amn <<br /> <br /> m=1 n=1<br /> <br /> ∞, then<br /> max<br /> <br /> n X<br /> n<br /> X<br /> <br /> 1≤k≤n<br /> 1≤l≤n i=k j=l<br /> <br /> 32<br /> <br /> ∞ X<br /> ∞<br /> X<br /> <br /> aij ckl %<br /> <br /> sup bkl ckl as n → ∞,<br /> k≥1, l≥1<br /> <br /> (6)<br /> <br /> Trường Đại học Vinh<br /> <br /> where bkl =<br /> <br /> ∞ X<br /> ∞<br /> X<br /> <br /> Tạp chí khoa học, Tập 46, Số 2A (2017), tr. 31-42<br /> <br /> aij , k ≥ 1, l ≥ 1.<br /> <br /> i=k j=l<br /> <br /> Proof. i) For all m ∧ n ≥ k ∨ l, we have<br /> k X<br /> l<br /> X<br /> <br /> m X<br /> n<br /> X<br /> <br /> cij ≤<br /> <br /> i=1 j=1<br /> <br /> cij .<br /> <br /> i=1 j=1<br /> <br /> We get (4) holds.<br /> ∞ P<br /> ∞<br /> P<br /> ckl = ∞. Then for all M > 0, there exist n0 ∈ N∗ such that<br /> ii) Case 1:<br /> k=1 l=1<br /> m X<br /> n<br /> X<br /> <br /> ckl > M for all m ∧ n ≥ n0 .<br /> <br /> k=1 l=1<br /> <br /> Hence,<br /> <br /> n X<br /> n<br /> X<br /> <br /> ckl > M for all n ≥ n0 .<br /> <br /> k=1 l=1<br /> <br /> We get (5) holds.<br /> ∞ P<br /> ∞<br /> P<br /> Case 2:<br /> ckl = c < ∞. Then for all ε > 0, there exist n1 ∈ N∗ such that<br /> k=1 l=1<br /> <br /> |<br /> <br /> m X<br /> n<br /> X<br /> <br /> ckl − c| < ε for all m ∧ n ≥ n1 .<br /> <br /> k=1 l=1<br /> <br /> Hence,<br /> |<br /> <br /> n X<br /> n<br /> X<br /> <br /> ckl − c| < ε for all n ≥ n1 .<br /> <br /> k=1 l=1<br /> <br /> We get (5) holds.<br /> iii) Case 1:<br /> <br /> sup bkl ckl = ∞. Let M > 0 be arbitrary. Then there exist kM , lM ∈ N∗<br /> k≥1, l≥1<br /> <br /> such that bkM lM ckM lM > 2M. By (5), we have<br /> lim<br /> <br /> n→∞<br /> <br /> n X<br /> n<br /> X<br /> <br /> aij =<br /> <br /> ∞ X<br /> ∞<br /> X<br /> <br /> i=1 i=1<br /> <br /> aij < ∞.<br /> <br /> i=1 i=1<br /> <br /> Hence,<br /> lim<br /> <br /> n→∞<br /> <br /> X<br /> <br /> aij = 0.<br /> <br /> (7)<br /> <br /> i∨j>n<br /> <br /> We get there exist nM ∈ N∗ such that<br /> X<br /> aij ckM lM < M for all n ≥ nM .<br /> i∨j>n<br /> <br /> 33<br /> <br /> Vu Thi Ngoc Anh, Nguyen Thi Thuy/ On the conditions for the complete convergence in mean...<br /> <br /> Thus, for n ≥ (kM ∨ lM ∨ nM ), we have<br /> n<br /> n<br /> X<br /> X<br /> <br /> aij ckM lM > M.<br /> <br /> i=kM j=lM<br /> <br /> Hence,<br /> max<br /> <br /> n X<br /> n<br /> X<br /> <br /> 1≤k≤n<br /> 1≤l≤n i=k j=l<br /> <br /> aij ckl ≥ M for all n ≥ (kM ∨ lM ∨ nM ).<br /> <br /> We get (6) holds.<br /> Case 2: sup bkl ckl = a < ∞. Let ε > 0 be arbitrary. Then there exist kε , lε ∈ N∗ such<br /> k≥1, l≥1<br /> <br /> that<br /> <br /> ε<br /> bkε lε ckε lε ≥ a − .<br /> 2<br /> By (7), we get there exists nε ∈ N∗ such that<br /> X<br /> ε<br /> aij ckε lε ≤ for all n ≥ nε .<br /> 2<br /> i∨j>n<br /> <br /> Thus, for n ≥ (kε ∨ lε ∨ nε ), we have<br /> n X<br /> n<br /> X<br /> <br /> aij ckε lε ≥ a − ε.<br /> <br /> i=kε j=lε<br /> <br /> Hence,<br /> max<br /> <br /> n X<br /> n<br /> X<br /> <br /> 1≤k≤n<br /> 1≤l≤n i=k j=l<br /> <br /> aij ckl ≥ a − ε for all n ≥ (kε ∨ lε ∨ nε ).<br /> <br /> We get (6) holds.<br /> Lemma 2.2. Let q > 0 and let {amn , m ≥ 1, n ≥ 1} be a double array of positive constants<br /> ∞ X<br /> ∞<br /> X<br /> such that<br /> amn < ∞. Let {Xmn , m ≥ 1, n ≥ 1} be a double array of independent<br /> m=1 n=1<br /> <br /> symmetric random elements in B. Write<br /> bkl =<br /> <br /> ∞ X<br /> ∞<br /> X<br /> <br /> aij , k ≥ 1, l ≥ 1,<br /> <br /> i=k j=l<br /> <br /> <br /> q<br /> k l<br /> <br /> X<br /> X<br /> <br /> <br /> <br /> T =<br /> akl <br /> Xij <br /> <br /> ,<br /> i=1 j=1<br /> <br /> k=1 l=1<br /> (<br /> if 0 < q ≤ 1<br /> 1,<br /> if 0 < q ≤ 1<br /> and β =<br /> q−1<br /> if q > 1<br /> 2 , if q > 1<br /> ∞ X<br /> ∞<br /> X<br /> <br /> (<br /> 21−q ,<br /> α=<br /> 1,<br /> 34<br /> <br /> (8)<br /> <br /> Trường Đại học Vinh<br /> <br /> Tạp chí khoa học, Tập 46, Số 2A (2017), tr. 31-42<br /> <br /> Then for all s, t, u ≥ 0, we have<br /> !<br /> <br /> <br /> <br /> q<br /> <br /> sup bkl kXkl k > t<br /> <br /> P<br /> <br /> ≤ 2P<br /> <br /> k≥1, l≥1<br /> <br /> t<br /> T ><br /> α<br /> <br /> <br /> (9)<br /> <br /> and<br /> P (T > s + t + u) ≤P<br /> <br /> s<br /> sup bkl kXkl kq > 2<br /> β<br /> k≥1, l≥1<br /> <br /> !<br /> <br /> <br />  <br /> <br /> u<br /> t<br /> + 4P T ><br /> P T ><br /> . (10)<br /> αβ<br /> αβ 2<br /> <br /> Furthermore, we have<br /> !<br /> E<br /> <br /> sup bkl kXkl k<br /> <br /> q<br /> <br /> ≤ E(T )<br /> <br /> (11)<br /> <br /> k≥1, l≥1<br /> <br /> and<br /> <br /> !<br /> E (T ) ≤ 6(α + β)3 E<br /> <br /> sup bkl kXkl kq<br /> <br /> + 6(α + β)3 c,<br /> <br /> (12)<br /> <br /> k≥1, l≥1<br /> <br /> where c > 0 such that P (T > c) ≤ 24−1 (α + β)−3 .<br /> Proof. For n ≥ 1 and a matrix (xij )n×n with the entries xij ∈ B, 1 ≤ i ≤ n, 1 ≤ j ≤ n, we<br /> write<br /> <br /> q<br /> X<br /> <br /> n X<br /> n<br /> v<br /> X<br /> u X<br /> <br /> qnn (π((xij )n×n )) =<br /> auv <br /> xij <br /> <br /> <br /> .<br /> <br /> <br /> u=1 v=1<br /> i=1 j=1<br /> Then<br /> <br /> <br /> qnn<br /> <br /> x+y<br /> 2<br /> <br /> <br /> <br /> ≤ α max(qnn (x), qnn (y)) for all x, y ∈ B nn<br /> <br /> and<br /> qnn (x + y) ≤ β(qnn (x) + qnn (y)) for all x, y ∈ B nn .<br /> Set<br /> nn<br /> Snn<br /> = qnn (π((Xij )n×n )),<br /> kl<br /> Enn<br /> = (Eij )n×n<br /> (<br /> Xkl if i = k, j = l<br /> where Eij =<br /> , 1 ≤ k ≤ n, 1 ≤ l ≤ n,<br /> 0<br /> otherwise<br /> <br /> <br /> kl<br /> kl<br /> Wnn<br /> = qnn π(Enn<br /> ) , 1 ≤ k ≤ n, 1 ≤ l ≤ n,<br /> kl<br /> Nnn = max Wnn<br /> .<br /> 1≤k≤n<br /> 1≤l≤n<br /> <br /> By Theorem 2.1 in [5], for all t ≥ 0, we have<br /> nn<br /> P (Nnn > t) ≤ 2P (Snn<br /> > t/α).<br /> <br /> (13)<br /> 35<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
8=>2