YOMEDIA
ADSENSE
On the conditions for the complete convergence in mean for double sums of independent random elements in banach spaces
21
lượt xem 1
download
lượt xem 1
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
In this paper, we establish the condition for convergence of X∞ m=1 X∞ n=1 1 mn E kSmnk (mn) 1/p q for double arrays of independent random elements in Banach spaces following the type proposed by Li, Qi and Rosalsky.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: On the conditions for the complete convergence in mean for double sums of independent random elements in banach spaces
Trường Đại học Vinh<br />
<br />
Tạp chí khoa học, Tập 46, Số 2A (2017), tr. 31-42<br />
<br />
ON THE CONDITIONS FOR THE COMPLETE CONVERGENCE<br />
IN MEAN FOR DOUBLE SUMS OF INDEPENDENT RANDOM<br />
ELEMENTS IN BANACH SPACES<br />
Vu Thi Ngoc Anh (1) , Nguyen Thi Thuy (2)<br />
of Mathematics, Hoa Lu University, Ninh Binh<br />
2 Teacher of Mathematics, Thanh Chuong 3 High School, Nghe An.<br />
Received on 19/4/2017, accepted for publication on 20/10/2017<br />
1 Department<br />
<br />
Abstract: In this paper, we establish the condition for convergence of<br />
<br />
<br />
∞ X<br />
∞<br />
X<br />
1<br />
kSmn k q<br />
E<br />
for double arrays of independent random elements<br />
mn<br />
(mn)1/p<br />
m=1 n=1<br />
in Banach spaces following the type proposed by Li, Qi and Rosalsky [6].<br />
1. Introduction and Preliminaries<br />
Throughout this paper, let (B, k.k) be a real separable Banach space. Li, Qi and Rosalsky<br />
[6] extended Theorem 2.4.1 in [1], Theorem 5 in [2] and Theorems 2.1 and 2.2 in [4] as follows:<br />
Let 0 < p < 2 and q > 0. Let {Xn , n ≥ 1} be a sequence of independent copies of a<br />
B-valued random element X. Set<br />
Sn = X1 + X2 + · · · + Xn , n ≥ 1.<br />
Then<br />
<br />
<br />
<br />
∞<br />
X<br />
1<br />
kSn k q<br />
E<br />
t) dt < ∞,<br />
<br />
if q < p<br />
<br />
<br />
<br />
EkXkp ln(kXk + 1) < ∞,<br />
<br />
<br />
<br />
EkXkq < ∞,<br />
<br />
if q = p<br />
if q > p<br />
<br />
0<br />
<br />
Based on that idea, we establish the condition for convergence of<br />
<br />
<br />
∞<br />
∞ X<br />
X<br />
1<br />
kSmn k q<br />
E<br />
for double arrays of independent random elements in Banach<br />
1/p<br />
mn<br />
(mn)<br />
m=1 n=1<br />
spaces.<br />
1)<br />
<br />
Email: anhyk86@gmail.com (V. T. N. Anh).<br />
<br />
31<br />
<br />
Vu Thi Ngoc Anh, Nguyen Thi Thuy/ On the conditions for the complete convergence in mean...<br />
<br />
Throughout this paper, the symbol C denotes a generic constant (0 < C < ∞) which<br />
might be different in different appearances. For a matrix A = (xij )m×n with the entries<br />
xij ∈ B, 1 ≤ i ≤ m, 1 ≤ j ≤ n, we denote<br />
π(A) = π ((xij )m×n ) = (x11 , x12 , . . . , x1n , . . . , xm1 , xm2 , . . . , xmn ) ∈ B mn .<br />
For a, b ∈ R, max{a, b} will be denoted by a ∨ b, min{a, b} will be denoted by a ∧ b.<br />
2. Main Results<br />
Theorem 2.1. Let 0 < p < 2 and q > 0. Let {Xmn , m ≥ 1, n ≥ 1} be a double array of<br />
independent copies of a B-valued random element X. Set<br />
Smn =<br />
<br />
m X<br />
n<br />
X<br />
<br />
Xkl , m ≥ 1, n ≥ 1.<br />
<br />
k=1 l=1<br />
<br />
Then<br />
<br />
<br />
<br />
∞ X<br />
∞<br />
X<br />
1<br />
kSmn k q<br />
E<br />
p<br />
<br />
(3)<br />
<br />
The following three lemmas are used to prove Theorem 2.1.<br />
Lemma 2.1. Let {cmn , m ≥ 1, n ≥ 1} be a double array of nonnegative real numbers.<br />
Then<br />
i) For all k ≥ 1, l ≥ 1, we have<br />
k X<br />
l<br />
X<br />
<br />
cij ≤<br />
<br />
i=1 j=1<br />
<br />
∞ X<br />
∞<br />
X<br />
<br />
cij .<br />
<br />
(4)<br />
<br />
ckl as n → ∞.<br />
<br />
(5)<br />
<br />
i=1 j=1<br />
<br />
ii) We have<br />
n X<br />
n<br />
X<br />
<br />
ckl %<br />
<br />
k=1 l=1<br />
<br />
∞ X<br />
∞<br />
X<br />
k=1 l=1<br />
<br />
iii) If {amn , m ≥ 1, n ≥ 1} is a double array of positive constants such that<br />
<br />
amn <<br />
<br />
m=1 n=1<br />
<br />
∞, then<br />
max<br />
<br />
n X<br />
n<br />
X<br />
<br />
1≤k≤n<br />
1≤l≤n i=k j=l<br />
<br />
32<br />
<br />
∞ X<br />
∞<br />
X<br />
<br />
aij ckl %<br />
<br />
sup bkl ckl as n → ∞,<br />
k≥1, l≥1<br />
<br />
(6)<br />
<br />
Trường Đại học Vinh<br />
<br />
where bkl =<br />
<br />
∞ X<br />
∞<br />
X<br />
<br />
Tạp chí khoa học, Tập 46, Số 2A (2017), tr. 31-42<br />
<br />
aij , k ≥ 1, l ≥ 1.<br />
<br />
i=k j=l<br />
<br />
Proof. i) For all m ∧ n ≥ k ∨ l, we have<br />
k X<br />
l<br />
X<br />
<br />
m X<br />
n<br />
X<br />
<br />
cij ≤<br />
<br />
i=1 j=1<br />
<br />
cij .<br />
<br />
i=1 j=1<br />
<br />
We get (4) holds.<br />
∞ P<br />
∞<br />
P<br />
ckl = ∞. Then for all M > 0, there exist n0 ∈ N∗ such that<br />
ii) Case 1:<br />
k=1 l=1<br />
m X<br />
n<br />
X<br />
<br />
ckl > M for all m ∧ n ≥ n0 .<br />
<br />
k=1 l=1<br />
<br />
Hence,<br />
<br />
n X<br />
n<br />
X<br />
<br />
ckl > M for all n ≥ n0 .<br />
<br />
k=1 l=1<br />
<br />
We get (5) holds.<br />
∞ P<br />
∞<br />
P<br />
Case 2:<br />
ckl = c < ∞. Then for all ε > 0, there exist n1 ∈ N∗ such that<br />
k=1 l=1<br />
<br />
|<br />
<br />
m X<br />
n<br />
X<br />
<br />
ckl − c| < ε for all m ∧ n ≥ n1 .<br />
<br />
k=1 l=1<br />
<br />
Hence,<br />
|<br />
<br />
n X<br />
n<br />
X<br />
<br />
ckl − c| < ε for all n ≥ n1 .<br />
<br />
k=1 l=1<br />
<br />
We get (5) holds.<br />
iii) Case 1:<br />
<br />
sup bkl ckl = ∞. Let M > 0 be arbitrary. Then there exist kM , lM ∈ N∗<br />
k≥1, l≥1<br />
<br />
such that bkM lM ckM lM > 2M. By (5), we have<br />
lim<br />
<br />
n→∞<br />
<br />
n X<br />
n<br />
X<br />
<br />
aij =<br />
<br />
∞ X<br />
∞<br />
X<br />
<br />
i=1 i=1<br />
<br />
aij < ∞.<br />
<br />
i=1 i=1<br />
<br />
Hence,<br />
lim<br />
<br />
n→∞<br />
<br />
X<br />
<br />
aij = 0.<br />
<br />
(7)<br />
<br />
i∨j>n<br />
<br />
We get there exist nM ∈ N∗ such that<br />
X<br />
aij ckM lM < M for all n ≥ nM .<br />
i∨j>n<br />
<br />
33<br />
<br />
Vu Thi Ngoc Anh, Nguyen Thi Thuy/ On the conditions for the complete convergence in mean...<br />
<br />
Thus, for n ≥ (kM ∨ lM ∨ nM ), we have<br />
n<br />
n<br />
X<br />
X<br />
<br />
aij ckM lM > M.<br />
<br />
i=kM j=lM<br />
<br />
Hence,<br />
max<br />
<br />
n X<br />
n<br />
X<br />
<br />
1≤k≤n<br />
1≤l≤n i=k j=l<br />
<br />
aij ckl ≥ M for all n ≥ (kM ∨ lM ∨ nM ).<br />
<br />
We get (6) holds.<br />
Case 2: sup bkl ckl = a < ∞. Let ε > 0 be arbitrary. Then there exist kε , lε ∈ N∗ such<br />
k≥1, l≥1<br />
<br />
that<br />
<br />
ε<br />
bkε lε ckε lε ≥ a − .<br />
2<br />
By (7), we get there exists nε ∈ N∗ such that<br />
X<br />
ε<br />
aij ckε lε ≤ for all n ≥ nε .<br />
2<br />
i∨j>n<br />
<br />
Thus, for n ≥ (kε ∨ lε ∨ nε ), we have<br />
n X<br />
n<br />
X<br />
<br />
aij ckε lε ≥ a − ε.<br />
<br />
i=kε j=lε<br />
<br />
Hence,<br />
max<br />
<br />
n X<br />
n<br />
X<br />
<br />
1≤k≤n<br />
1≤l≤n i=k j=l<br />
<br />
aij ckl ≥ a − ε for all n ≥ (kε ∨ lε ∨ nε ).<br />
<br />
We get (6) holds.<br />
Lemma 2.2. Let q > 0 and let {amn , m ≥ 1, n ≥ 1} be a double array of positive constants<br />
∞ X<br />
∞<br />
X<br />
such that<br />
amn < ∞. Let {Xmn , m ≥ 1, n ≥ 1} be a double array of independent<br />
m=1 n=1<br />
<br />
symmetric random elements in B. Write<br />
bkl =<br />
<br />
∞ X<br />
∞<br />
X<br />
<br />
aij , k ≥ 1, l ≥ 1,<br />
<br />
i=k j=l<br />
<br />
<br />
q<br />
k l<br />
<br />
X<br />
X<br />
<br />
<br />
<br />
T =<br />
akl <br />
Xij <br />
<br />
,<br />
i=1 j=1<br />
<br />
k=1 l=1<br />
(<br />
if 0 < q ≤ 1<br />
1,<br />
if 0 < q ≤ 1<br />
and β =<br />
q−1<br />
if q > 1<br />
2 , if q > 1<br />
∞ X<br />
∞<br />
X<br />
<br />
(<br />
21−q ,<br />
α=<br />
1,<br />
34<br />
<br />
(8)<br />
<br />
Trường Đại học Vinh<br />
<br />
Tạp chí khoa học, Tập 46, Số 2A (2017), tr. 31-42<br />
<br />
Then for all s, t, u ≥ 0, we have<br />
!<br />
<br />
<br />
<br />
q<br />
<br />
sup bkl kXkl k > t<br />
<br />
P<br />
<br />
≤ 2P<br />
<br />
k≥1, l≥1<br />
<br />
t<br />
T ><br />
α<br />
<br />
<br />
(9)<br />
<br />
and<br />
P (T > s + t + u) ≤P<br />
<br />
s<br />
sup bkl kXkl kq > 2<br />
β<br />
k≥1, l≥1<br />
<br />
!<br />
<br />
<br />
<br />
<br />
u<br />
t<br />
+ 4P T ><br />
P T ><br />
. (10)<br />
αβ<br />
αβ 2<br />
<br />
Furthermore, we have<br />
!<br />
E<br />
<br />
sup bkl kXkl k<br />
<br />
q<br />
<br />
≤ E(T )<br />
<br />
(11)<br />
<br />
k≥1, l≥1<br />
<br />
and<br />
<br />
!<br />
E (T ) ≤ 6(α + β)3 E<br />
<br />
sup bkl kXkl kq<br />
<br />
+ 6(α + β)3 c,<br />
<br />
(12)<br />
<br />
k≥1, l≥1<br />
<br />
where c > 0 such that P (T > c) ≤ 24−1 (α + β)−3 .<br />
Proof. For n ≥ 1 and a matrix (xij )n×n with the entries xij ∈ B, 1 ≤ i ≤ n, 1 ≤ j ≤ n, we<br />
write<br />
<br />
q<br />
X<br />
<br />
n X<br />
n<br />
v<br />
X<br />
u X<br />
<br />
qnn (π((xij )n×n )) =<br />
auv <br />
xij <br />
<br />
<br />
.<br />
<br />
<br />
u=1 v=1<br />
i=1 j=1<br />
Then<br />
<br />
<br />
qnn<br />
<br />
x+y<br />
2<br />
<br />
<br />
<br />
≤ α max(qnn (x), qnn (y)) for all x, y ∈ B nn<br />
<br />
and<br />
qnn (x + y) ≤ β(qnn (x) + qnn (y)) for all x, y ∈ B nn .<br />
Set<br />
nn<br />
Snn<br />
= qnn (π((Xij )n×n )),<br />
kl<br />
Enn<br />
= (Eij )n×n<br />
(<br />
Xkl if i = k, j = l<br />
where Eij =<br />
, 1 ≤ k ≤ n, 1 ≤ l ≤ n,<br />
0<br />
otherwise<br />
<br />
<br />
kl<br />
kl<br />
Wnn<br />
= qnn π(Enn<br />
) , 1 ≤ k ≤ n, 1 ≤ l ≤ n,<br />
kl<br />
Nnn = max Wnn<br />
.<br />
1≤k≤n<br />
1≤l≤n<br />
<br />
By Theorem 2.1 in [5], for all t ≥ 0, we have<br />
nn<br />
P (Nnn > t) ≤ 2P (Snn<br />
> t/α).<br />
<br />
(13)<br />
35<br />
<br />
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn