Upload
Nâng cấp VIP
Trang chủ » Công Nghệ Thông Tin » Cơ sở dữ liệu
25 trang
24 lượt xem
1
0

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based Anomaly Detection tập trung vào các phương pháp phát hiện bất thường dựa trên phân tích mật độ điểm dữ liệu. Bài thuyết trình trình bày khái niệm, kỹ thuật đánh giá mật độ và các phương pháp đề xuất có tính ứng dụng cao. Đây là hướng tiếp cận hiệu quả trong môi trường dữ liệu có phân bố không đồng đều. Mời các bạn cùng tham khảo để biết thêm chi tiết!

Từ khoá:

hoatrongguong03

Khai thác dữ liệu

Ứng dụng khai thác dữ liệu

Data Mining and Application

Phương pháp phát hiện bất thường

Mô hình mật độ điểm dữ liệu

Đánh giá phân bố mật độ

Phân tích ngoại lệ dựa trên mật độ

Share
/
25

Có thể bạn quan tâm

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

42 trang
Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

18 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

33 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

37 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

34 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

51 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

44 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

53 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

45 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

25 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

42 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

50 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

48 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

20 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

35 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

37 trang

Tài liêu mới

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

43 trang
Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

49 trang
Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

42 trang
Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

88 trang
Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

24 trang
Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

14 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

44 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

20 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

27 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

30 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

40 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

35 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

12 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

34 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

32 trang

AI tóm tắt

- Giúp bạn nắm bắt nội dung tài liệu nhanh chóng!

Giới thiệu tài liệu

Tài liệu này giới thiệu về phát hiện bất thường dựa trên mật độ, một phương pháp quan trọng trong lĩnh vực khai phá dữ liệu và học máy. Phát hiện bất thường là quá trình xác định các điểm dữ liệu, mẫu hoặc quan sát không tuân theo hành vi thông thường của dữ liệu. Tài liệu này sẽ trình bày các khái niệm cơ bản, các loại bất thường, và các thuật toán phổ biến để phát hiện bất thường dựa trên mật độ.

Đối tượng sử dụng

Sinh viên, nhà nghiên cứu, kỹ sư dữ liệu

Từ khoá chính

phát hiện bất thườngmật độLOFDBSCANkhai phá dữ liệuhọc máyđiểm ngoại lệanomaly detectiondensity-basedlocal outlier factordensity-based spatial clustering of applications with noise

Nội dung tóm tắt

Tài liệu này trình bày một cái nhìn tổng quan về phát hiện bất thường dựa trên mật độ, một kỹ thuật quan trọng trong việc xác định các điểm dữ liệu không phù hợp với hành vi thông thường của tập dữ liệu. Đầu tiên, tài liệu giới thiệu các khái niệm cơ bản về phát hiện bất thường, bao gồm định nghĩa và các loại bất thường khác nhau như bất thường điểm, bất thường ngữ cảnh và bất thường tập thể. Sau đó, tài liệu tập trung vào phát hiện bất thường dựa trên mật độ, giải thích nguyên lý cơ bản và các thuật toán chính như LOF (Local Outlier Factor) và DBSCAN (Density-Based Spatial Clustering of Applications with Noise). LOF đánh giá mức độ bất thường của một điểm dữ liệu dựa trên mật độ cục bộ của nó so với các điểm lân cận, trong khi DBSCAN sử dụng mật độ để phân cụm dữ liệu và xác định các điểm nhiễu. Tài liệu cũng so sánh hai thuật toán này, nêu bật ưu điểm và nhược điểm của từng thuật toán trong các tình huống khác nhau. Cuối cùng, tài liệu cung cấp một số ứng dụng thực tế của phát hiện bất thường trong các lĩnh vực như tài chính, công nghệ thông tin, y tế và sản xuất.

Giới thiệu

Về chúng tôi

Việc làm

Quảng cáo

Liên hệ

Chính sách

Thoả thuận sử dụng

Chính sách bảo mật

Chính sách hoàn tiền

DMCA

Hỗ trợ

Hướng dẫn sử dụng

Đăng ký tài khoản VIP

Zalo/Tel:

093 303 0098

Email:

support@tailieu.vn

Phương thức thanh toán

Layer 1

Theo dõi chúng tôi

Facebook

Youtube

TikTok

Chịu trách nhiệm nội dung: Nguyễn Công Hà. ©2025 Công ty TNHH Tài Liệu trực tuyến Vi Na.
Địa chỉ: 54A Nơ Trang Long, P. Bình Thạnh, TP.HCM - Điện thoại: 0283 5102 888 - Email: info@tailieu.vn
Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015