Upload
Nâng cấp VIP
Trang chủ » Công Nghệ Thông Tin » Cơ sở dữ liệu
48 trang
23 lượt xem
1
0

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias tập trung phân tích sự thiên lệch chủng tộc trong hệ thống dự đoán tái phạm COMPAS. Nội dung đề cập đến phương pháp xử lý dữ liệu, thiết kế thí nghiệm và đánh giá kết quả một cách khách quan. Đề tài mang ý nghĩa xã hội sâu sắc trong việc xây dựng hệ thống công bằng. Mời các bạn cùng tham khảo để biết thêm chi tiết!

Từ khoá:

hoatrongguong03

Khai thác dữ liệu

Ứng dụng khai thác dữ liệu

Data Mining and Application

Hệ thống dự đoán tái phạm COMPAS

Phân tích thiên lệch chủng tộc

Thiết kế thí nghiệm khách quan

Share
/
48

Có thể bạn quan tâm

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

42 trang
Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

18 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

33 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

37 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

34 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

51 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

44 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

53 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

45 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

25 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

42 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

50 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

48 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

20 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

35 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

37 trang

Tài liêu mới

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

43 trang
Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

49 trang
Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

42 trang
Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

88 trang
Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

24 trang
Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

14 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

44 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

20 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

27 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

30 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

40 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

35 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

12 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

34 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

32 trang

AI tóm tắt

- Giúp bạn nắm bắt nội dung tài liệu nhanh chóng!

Giới thiệu tài liệu

Đồ án này tập trung vào việc phân tích và dự đoán khả năng tái phạm của tội phạm sử dụng bộ dữ liệu COMPAS. Mục tiêu là xây dựng các mô hình học máy để đánh giá rủi ro tái phạm, từ đó hỗ trợ các quyết định trong hệ thống tư pháp.

Đối tượng sử dụng

Sinh viên, nhà nghiên cứu trong lĩnh vực khoa học dữ liệu và học máy, những người quan tâm đến ứng dụng của học máy trong lĩnh vực tư pháp và xã hội.

Từ khoá chính

COMPAStái phạmhọc máyphân tích dữ liệudự đoántư phápthiên vịxử lý dữ liệu

Nội dung tóm tắt

Đồ án nghiên cứu về dự đoán khả năng tái phạm của tội phạm sử dụng bộ dữ liệu COMPAS, một vấn đề quan trọng trong hệ thống tư pháp. Nghiên cứu này bao gồm các bước phân tích và tiền xử lý dữ liệu, xây dựng và đánh giá các mô hình học máy khác nhau như K-Nearest Neighbors, Decision Tree, Random Forest và Gradient Boosting. Các thách thức như thiên vị trong dữ liệu và sự phụ thuộc tuyến tính giữa các đặc trưng cũng được xem xét. Phạm vi thực hiện bao gồm phân tích đơn biến và đa biến để hiểu rõ hơn về các yếu tố ảnh hưởng đến khả năng tái phạm. Kết quả cho thấy mô hình Gradient Boosting đạt hiệu suất tốt nhất. Hướng phát triển trong tương lai bao gồm việc sử dụng các kỹ thuật phân tích dữ liệu đa dạng hơn, xử lý ngoại lệ và kiểm định hiệu suất của nhiều mô hình khác nhau, cũng như làm sạch và tăng cường thu thập dữ liệu để cải thiện độ chính xác của mô hình.

Giới thiệu

Về chúng tôi

Việc làm

Quảng cáo

Liên hệ

Chính sách

Thoả thuận sử dụng

Chính sách bảo mật

Chính sách hoàn tiền

DMCA

Hỗ trợ

Hướng dẫn sử dụng

Đăng ký tài khoản VIP

Zalo/Tel:

093 303 0098

Email:

support@tailieu.vn

Phương thức thanh toán

Layer 1

Theo dõi chúng tôi

Facebook

Youtube

TikTok

Chịu trách nhiệm nội dung: Nguyễn Công Hà. ©2025 Công ty TNHH Tài Liệu trực tuyến Vi Na.
Địa chỉ: 54A Nơ Trang Long, P. Bình Thạnh, TP.HCM - Điện thoại: 0283 5102 888 - Email: info@tailieu.vn
Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015