Upload
Nâng cấp VIP
Trang chủ » Công Nghệ Thông Tin » Cơ sở dữ liệu
20 trang
14 lượt xem
0
0

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction giới thiệu hệ thống dự đoán phê duyệt khoản vay dựa trên các thuộc tính người vay và mô hình học máy. Bài thuyết trình trình bày quá trình xây dựng bài toán, áp dụng thuật toán và đánh giá hiệu quả mô hình. Đây là hướng ứng dụng quan trọng trong lĩnh vực tài chính. Mời các bạn cùng tham khảo để biết thêm chi tiết!

Từ khoá:

hoatrongguong03

Khai thác dữ liệu

Ứng dụng khai thác dữ liệu

Data Mining and Application

Hệ thống dự đoán khoản vay

Phân tích thuộc tính người vay

Mô hình học máy tài chính

Dữ liệu phê duyệt tín dụng

Share
/
20

Có thể bạn quan tâm

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

42 trang
Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

18 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

33 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

37 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

34 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

51 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

44 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

53 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

45 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

25 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

42 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

50 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

48 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

20 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

35 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

37 trang

Tài liêu mới

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

43 trang
Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

49 trang
Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

42 trang
Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

88 trang
Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

24 trang
Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

14 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

44 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

20 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

27 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

30 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

40 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

35 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

12 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

34 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

32 trang

AI tóm tắt

- Giúp bạn nắm bắt nội dung tài liệu nhanh chóng!

Giới thiệu tài liệu

Bài thuyết trình này trình bày về dự án dự đoán khả năng phê duyệt khoản vay, một vấn đề quan trọng trong lĩnh vực tài chính và quản lý rủi ro tín dụng. Mục tiêu chính là xây dựng một mô hình có khả năng dự đoán chính xác liệu một khách hàng có khả năng trả nợ hay không, dựa trên các thông tin cá nhân và tài chính của họ.

Đối tượng sử dụng

Sinh viên và nhà nghiên cứu quan tâm đến lĩnh vực khai thác dữ liệu, học máy và ứng dụng trong tài chính, đặc biệt là dự đoán rủi ro tín dụng và phê duyệt khoản vay.

Từ khoá chính

dự đoán khoản vaykhai thác dữ liệuhọc máyphê duyệt tín dụngXGBoostCatBoostLightGBM

Nội dung tóm tắt

Dự án tập trung vào việc xây dựng và đánh giá các mô hình học máy để dự đoán khả năng phê duyệt khoản vay. Dữ liệu được sử dụng bao gồm thông tin cá nhân của khách hàng, lịch sử tín dụng, thu nhập và các khoản vay hiện tại. Các mô hình được áp dụng bao gồm XGBoost, CatBoost và LightGBM, là những thuật toán mạnh mẽ trong việc xử lý dữ liệu dạng bảng và có khả năng xử lý sự mất cân bằng lớp. Quá trình tiền xử lý dữ liệu bao gồm xử lý các giá trị thiếu và chuyển đổi các biến số. Kết quả cho thấy các mô hình Boosting và Voting Ensembles có tiềm năng lớn trong việc dự đoán kết quả phê duyệt khoản vay. Các thử nghiệm được thực hiện để đánh giá hiệu suất của các mô hình khác nhau, sử dụng các độ đo như AUC-ROC. Ma trận tương quan cũng được sử dụng để hiểu rõ hơn về mối quan hệ giữa các biến số trong dữ liệu. Các kết quả cho thấy sự phân phối của 'loan_status' cho thấy sự mất cân bằng, đó là lý do tại sao chúng tôi sử dụng các mô hình như CatBoost, XGBoost,... Bên cạnh đó, các thuật toán dựa trên Gradient Boosting có hiệu quả trong việc xử lý các tập dữ liệu không cân bằng.

Giới thiệu

Về chúng tôi

Việc làm

Quảng cáo

Liên hệ

Chính sách

Thoả thuận sử dụng

Chính sách bảo mật

Chính sách hoàn tiền

DMCA

Hỗ trợ

Hướng dẫn sử dụng

Đăng ký tài khoản VIP

Zalo/Tel:

093 303 0098

Email:

support@tailieu.vn

Phương thức thanh toán

Layer 1

Theo dõi chúng tôi

Facebook

Youtube

TikTok

Chịu trách nhiệm nội dung: Nguyễn Công Hà. ©2025 Công ty TNHH Tài Liệu trực tuyến Vi Na.
Địa chỉ: 54A Nơ Trang Long, P. Bình Thạnh, TP.HCM - Điện thoại: 0283 5102 888 - Email: info@tailieu.vn
Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015