intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Xử lý ảnh - Chương 21: Xử lý ảnh màu và ảnh đa phổ

Chia sẻ: Lão Lão | Ngày: | Loại File: PDF | Số trang:14

60
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong chương trước, chúng ta đã đề cập tới các ảnh số hai chiều. Các ảnh như vậy có thể được coi như có mức xám là hàm hai biến không gian. Một sự tổng quát hoá dễ hiểu lên ba chiều sẽ cho chúng ta các ảnh có mức xám là một hàm hai biến không gian và một biến phổ. Chúng được gọi là các ảnh đa phổ. Khi việc lấy mẫu phổ bị giới hạn bởi ba dải tương ứng với ba dải phổ đỏ, lục và lam mà hệ thống thị giác của con người có thể cảm nhận, chúng ta gọi là thủ tục xử lý ảnh màu.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Xử lý ảnh - Chương 21: Xử lý ảnh màu và ảnh đa phổ

  1. Ch­¬ng 21 XỬ LÝ ẢNH MÀU VÀ ẢNH ĐA PHỔ 21.1. GIỚI THIỆU Trong chương trước, chúng ta đã đề cập tới các ảnh số hai chiều. Các ảnh như vậy có thể được coi như có mức xám là hàm hai biến không gian. Một sự tổng quát hoá dễ hiểu lên ba chiều sẽ cho chúng ta các ảnh có mức xám là một hàm hai biến không gian và một biến phổ. Chúng được gọi là các ảnh đa phổ. Khi việc lấy mẫu phổ bị giới hạn bởi ba dải tương ứng với ba dải phổ đỏ, lục và lam mà hệ thống thị giác của con người có thể cảm nhận, chúng ta gọi là thủ tục xử lý ảnh màu. Một ảnh ba chiều có thể được tạo ra bằng cách lấy mẫu không chỉ hai toạ độ không gian của một ảnh quang học, mà còn phổ bước sóng ánh sáng tại mỗi điểm. Vì vậy, thay vì lượng tử hoá tổng cường độ ánh sáng chiếu lên từng điểm ảnh, ta đi lấy mẫu và lượng tử hoá phổ điện từ của ánh tới đó. Việc này tạo thành một ảnh ba chiều mà trong đó mức xám là một hàm hai biến không gian và một biến thứ ba là bước sóng quang học. Phạm trù liên quan tới việc xử lý những ảnh như vậy thường gọi là phân tích ảnh đa phổ. Ảnh kết quả đôi khi được gọi với cái tên ảnh đa số (multidigital). Chúng thường được tổ chức như một chuỗi các ảnh số hai chiều, mà mỗi một ảnh trong số đó có được bằng cách số hóa ảnh ban đầu trong một dải phổ hẹp. 21.2. PHÂN TÍCH ẢNH ĐA PHỔ Có lẽ điểm nổi bật nhất đối với phân tích đa phổ đó là trong lĩnh vực cảm biến từ xa. Các ảnh đa phổ thu được từ máy bay hay trạm không gian đang bay trên vùng cần nghiên cứu trên bề mặt trái đất. Mỗi điểm ảnh được cảm biến bởi một bộ các thiết bị đo ánh sáng dải hẹp. Vì thế, ảnh được số hoá với các điểm ảnh nhiều giá trị, thường được sử dụng 24 hay hơn 24 kênh phổ. Mỗi một ảnh hai chiều thể hiện đối tượng giống như khi nó xuất hiện qua một bộ lọc quang học dải hẹp. Giải phổ được kiểm soát bởi phân tích đa phổ không cần phải giới hạn trong phổ nhìn thấy. Thông thường, dải mà chúng ta quan tâm mở rộng từ tia hồng ngoại qua phổ nhìn thấy cho tới tia tử ngoại. Phần đáng chú ý của phân tích phổ được dành hết cho sự phân lớp điểm ảnh. Trong quá trình này, ảnh được phân chia thành các vùng tương ứng với các kiểu bề mặt khác nhau, ví dụ như các vùng hồ, các cánh đồng, các cánh rừng, khu dân cư và các khu công nghiệp. Mỗi điểm ảnh đa trị được phân lớp như với các kiểu bề mặt sử dụng tập số đo mật độ phổ của nó. Sự phân lớp được hoàn thành với các kỹ thuật tương tự như đã đề cập trong chương 20. Thường thường, các phép toán đại số ví dụ như phép trừ và các tỷ số tạo thành được thực hiện trên một tập ảnh để tăng cường sự khác nhau của bề mặt. Trong khi ảnh nhận được trong một dải phổ cụ thể nào đó sẽ mất hình dạng do các hiệu ứng chiếu sáng, thì các ảnh tỷ lệ cho biết các tính chất bề 430
  2. mặt xác thực hơn. Độc giả có quan tâm nên tham khảo tài liệu về cảm biến từ xa để có thể hiểu thêm về vấn đề này. 21.3. XỬ LÝ MÀU ẢNH 21.3.1. Cảm nhận màu Khuôn dạng quen thuộc nhất của các ảnh đa phổ là khả năng cảm nhận màu thông thường. Võng mạc của mắt người được bao phủ với các tế bào thần kinh cảm nhận ánh sáng (Hình 21-1) có chức năng tương tự các vị trí cảm nhận trên chip CCD. Các tế bào thần kinh cảm nhận sáng hấp thụ ánh sáng từ ảnh và tập trung trên võng mạc bởi thuỷ tinh thể và võng mạc. Chúng sinh ra các xung thần kinh tới não, thông qua xấp xỉ một triệu sợi dây thần kinh quang học. Tần số của các xung này được mã hoá thành độ sáng của ánh sáng tới HÌNH 21-1 Hình 21-1 Mắt người (mắt phải, nhìn từ trên xuống) Tế bào cảm quang là sự trộn lẫn của hai loại, các tế bào hình que và các tế bào hình nón, gọi theo hình dạng vật lý của chúng. Tế bào hình que nhạy cảm hơn, cung cấp cho chúng ta khả năng cảm nhận ánh sáng, đêm tối đơn sắc. Tế bào hình nón có khả năng cảm nhận màu, nhưng chỉ ở các mức ánh sáng cao. Tế bào hình nón có ba loại, điểm khác nhau chủ yếu về tính chất quang hoá đó là chúng chuyển đổi ánh sáng thành các xung thần kinh. Tế bào hình nón chia thành phần thấy được của phổ điện từ thành ba dải: đỏ, lục và lam. Vì nguyên nhân này mà ba màu này được coi như các màu chính đối với khả năng nhìn của người. Hình 21-2 đưa ra các phổ nhạy cảm của ba loại tế bào hình nón trong hệ thống cảm nhận của con người. HÌNH 21-2 431
  3. Hình 21-2 Phổ độ nhạy cảm của các tế bào cảm quang của mắt người Các xung thần kinh sinh ra bởi các tế bào cảm quang đáp ứng lại ánh sáng đi qua lớp các tế bào lưỡng cực và lớp tế bào hạch. Mạng nơ ron nhân tạo được miêu tả trong chương 20 được mô phỏng sau kiến trúc và hoạt động của các tế bào võng mạc này. Các sợi trục của khoảng chừng một triệu tế bào hạch tạo thành dây thần kinh quang học, nó hướng dẫn dữ liệu ảnh tới não bộ. 21.3.2. Ảnh ba màu Vì bản chất của hệ thống thị giác con người, nên phần lớn sản phẩm trình bày sự cố gắng và phí tổn trong ảnh điện tử đã dành hết cho các hệ thống ba màu, đặc biệt là các camera truyền hình, các bộ số hoá, các thiết bị hiển thị và các máy in. Vì vậy, chế độ ba màu được coi là đặc biệt quan trọng. Không chỉ sự tăng cường ảnh màu là một sự thực hiện ba màu, mà phân tích định lượng ảnh màu cũng thường được thực hiện trên thiết bị ba màu, vì nó tạo ra khối lượng nhiều với giá thành tương đối thấp. Các ví dụ phổ biến về hệ thống ảnh ba màu bao gồm các ảnh chụp màu và ảnh TV màu (chương 2, 3). Trong cả hai trường hợp, phổ nhìn thấy được chia thành ba dải- đỏ, lục và lam-gần giống như sự lượng tử hoá phổ thực hiện bởi mắt người. Trong ảnh chụp màu, các ảnh riêng biệt được rửa theo ba loại thuốc ảnh xen lẫn nhau. Trong TV màu, sử dụng ba bộ cảm biến ảnh, mỗi bộ đảm nhận chức năng của một bộ lọc quang học màu đỏ, lục, lam. Đối với mục đích hiển thị, các ảnh màu đỏ, lục, lam được đặt chồng lên nhau, trên máy in màu hoặc trên màn hình hiển thị màu. Việc xếp chồng này tạo ra các kết quả gần giống như nhau trên võng mạc như cảnh ban đầu và do đó trông như như bình thường. Trong khi một ảnh số ba màu có thể được coi như một hàm ba toạ độ vô hướng (hai toạ độ không gian và một chiều phổ). Nó thường thuận lợi hơn để xem nó như một ảnh bình thường (hai chiều) có ba mức xám (đỏ, lục, lam) tại mỗi điểm ảnh. Liên quan đến các vấn đề khác, nó hữu dụng hơn để xem xét một sự nạp chồng ba ảnh số đơn sắc. Xử lý và phân tích ảnh màu thực sự rất đơn giản nếu ta có thể nhận thấy rõ hai sự thay thế này. Sau này, nhiều khái niệm đề cập trong các chương trước có thể được áp dụng với một chút sửa đổi. 21.3.3. Đặc tả màu Khuôn dạng RGB. Có nhiều phương pháp có thể chỉ rõ định lượng một màu, chẳng hạn như xác định một điểm ảnh trong một ảnh màu số. Cách thức dễ hiểu nhất là sử dụng các giá trị độ tỷ lệ độ sáng đỏ lục, lam, tỷ lệ giữa 0 và 1. Chúng ta gọi quy ước này là khuôn dạng RGB. Mỗi điểm anảh có thể được biểu diễn bởi một điểm trong phần tư thứ nhất của không gian ba chiều, như trinhg bày trong hình lập phương màu trong hình 21-3. Lược đồ mức xám của một ảnh ba màu là một sự phân bố các điểm trong không gian RGB. HÌNH 21-3 432
  4. Hình 21-3 Khối lập phương không gian màu Không gian màu RGB ban đầu không biểu diễn độ sáng của bất kỳ một màu chính nào và vì thế nó có màu đen. Độ sáng đầy đủ của cả màu chính cùng xuất hiện sẽ là màu trắng. Một lượng ba thành phần màu bằng nhau với độ sáng yếu hơn tạo ra một sắc thái xám. Quỹ tích của tất cả các điểm như vậy nằm trên đường chéo của hình lập phương màu và được gọi là đường xám. Ba góc của hình lập phương màu tương ứng với ba màu chính-đỏ, lục và lam. Ba góc còn lại tương ứng với các màu phụ như vàng, lục lam và màu tím. Khuôn dạng HSI. Một giảm đò đặc tả thường dùng khác, gọi là khuôn dạng HSI, là một sự nghi thức hoá hệ thống màu được phát triển bởi Munsell và thường được sử dụng bởi các hoạ sĩ. Thiết kế của nó phản ánh cách mà con người nhìn màu và nó cũng tạo cơ hội thuận lợi cho việc xử lý ảnh. Trong khuôn dạng HSI. I viết tắt của Intensity (cường độ), hay độ sáng. Đối với mục đích của chúng ta, nó là trung bình của các giá trị mức xám R, G và B, mặc dù các giản đồ khác với sự phân bổ các màu không đồng đều cũng được sử dụng. Giá trị cường độ chỉ rõ độ sáng toàn bộ điểm ảnh, mà không biết điểm ảnh đó màu gì. Ta có thể chuyển đổi một ảnh thành ảnh đơn sắc bằng lấy trung bình các thành phần RGB với nhau, do đó loại trừ các thông tin về màu sắc. Hai tham số chứa thông tin màu đó là màu sắc (Hue-H) và độ bão hoà (Saluration-S), mặc dù một số thuật ngữ tương đương đôi khi cũng được sử dụng. Hai tham số này được minh hoạ bởi vòng tròn màu trong hình 21-4. Màu sắc của một màu ám chỉ bước sóng phổ của màu đó. Một cách tuỳ ý, một màu sắc ở góc 00 là màu đỏ, 1200 là màu lục, và 2400 là màu lam. Màu sắc trải ngang qua các màu của phổ nhìn thấy từ 00 tới 240. Giữa 2400 và 3600 không có phổ của màu mà mắt có thể nhận biết được. HÌNH 21-4 Hình 21-4 Đường tròn màu Tham số độ bão hoà là bán kính từ gốc đến đường tròn màu. Xung quanh chu vi của đường tròn là các màu tinh khiết, hay bão hoà, và độ bão hoà của chúng có giá trị bằng 1. Tại tâm nằm giữa các sắc thái không rõ rệt (xám) có độ bão hoà bằng 0. Khái niệm độ bão hoà có thể minh hoạ như sau. Nếu bạn có một thùng sơn màu đỏ. Nó sẽ tương ứng với màu sắc 0 và bão hoà là 1. Trộn vào thùng sơn trắng làm cường độ của màu đỏ nhỏ đi, giảm độ bão hoà, nhưng không làm cho nó tối hơn. Màu hồng tương ứng với độ bão hoà bằng 0.5, … Việc hoà trộn thêm nhiều màu trắng vào, màu đỏ trở nên nhạt hơn và độ bão hoà giảm, thậm chí tiến tới 0 (màu 433
  5. trắng). Nếu mặt khác bạn hoà trộn sơn màu đen với màu đỏ sáng, độ bão hoà nó sẽ giảm (tiến về màu đen). Trong khi màu sắc và độ bão hoà tồn tại đối lập nhau. Cùng lúc ba màu toạ độ định nghĩa một không gian hình trụ tròn (hình 21-5). Sắc thái xám nằm dọc trên trục từ màu đen ở đáy trụ tới màu trắng ở đỉnh trụ. Các màu đử độ sáng, độ bão hoã nằm trên chu vi của vòng tròn trên mặt đỉnh. Có nhiều hệ toạ độ màu khác đã được sử dụng. Chúng thiết lập bởi CIE, một uỷ ban chuẩn quốc tế về ánh sáng và màu, có lẽ được nhiều người sử dụng nhất. Chúng dựa trên những dữ liệu thử nghiệm từ việc thu thập các thử nghiệm phù hợp màu đối với quan sát của con người. HÌNH 21-5 Hình 21-5 Không gian màu hình trụ 21.3.4. Chuyển đổi toạ độ màu Đối với mục đích xử lý ảnh, nó rất hữu dụng cho khả năng chuyển đổi giữa hệ toạ độ màu RGB và HSI. Một vài quá trình chỉ thực hiện tốt trên hệ thống này hoặc hệ thống khác. 21.3.4.1. Chuyển đổi RGB sang HSI Việc chuyển đổi từ khuôn dạng RGB sang HSI có thể được tiếp cận như sau. Trở lại với đường xám trên đường chéo của hình lập phương màu trong không gian RGB và nó là trục đứng trong hình trụ tròn của không gian HSI. Do đó chúng ta có thể bắt đầu bằng một hệ toạ độ (x, y, z) trong đó hình lập phương RGB được quay sao cho đường chéo của nó nằm dọc theo trục z và trục R của nó nằm trong mặt phẳng xz (Hình 21-6). Phép quay này được cho bởi. 1 1 1 x 2 R  G  B y G  B z R  G  B  (1) 6 2 3 Tiếp theo, chúng ta chuyển đổi toạ độ hình trụ tròn bằng cách định nghĩa tọa độ cực trong mặt phẳng xy. Chúng ta có   x2  y2   ang  x, y  (2) Trong đó ang(x,y) là góc do một đường từ gốc toạ độ đến điểm (x, y) tạo thành với trục x. Đây là đường tiếp tuyến cung cơ bản. 434
  6. HÌNH 21-6 Hình 21-6 Quay hình lập phương RGB Chúng ta có toạ độ hình trụ, trong đó (, , z) tương đương với (H,S,I) nhưng có hai vấn đề với độ bão hoà: Nó không độc lập với cường độ, tuỳ chúng ta muốn nó là gì, và các màu có độ bão hoà đầy đủ (chúng không có quá hai màu chính) trên hình lục giác trong mặt phẳng xy (hình 21-7a), thay vì trên một đường tròn. Biện pháp sửa chữa là chuẩn hoá  bằng cách chia giá trị lớn nhất cho . Việc này sẽ dẫn tới công thức bão hoà.  3 min R, G , B  3 S  1 1 min  R, G, B  (3)  max RG B I Các màu bão hoà đầy đủ bây giờ là trên hình tròn bán kính bằng 1 trong mặt phẳng xy (hình 21-7b). HÌNH 21-7 Hình 21-7 Mặt phẳng xy của không gian màu: (a) toạ độ cực chưa chuẩn hoá; (b) độ bão hoà đã chuẩn hoá Trong khi màu sắc có thể được tính với  trong biểu thức (2), thì có một phương pháp tương đương để tính góc  1  R  G   R  B     cos 1  2 (4)   R  G 2  R  B G  B     Và màu sắc do đó là  GB H  (5) 2   GB 435
  7. 21.3.4.2. Chuyển đổi HSI sang RBG Công thức cho việc chuyển đổi từ HSI sang RGB có dạng hơi khác so, tuỳ thuôckhu vực hình quạt của đường tròn màu mà điểm được chuyển đổi sẽ nằm trong đó. Đối với 00  H < 1200, I  S cos H   I R 1   B 1  S  G  3I  R  B (6)  0 3  cos 60  H   3 Trong khi với 1200  H
  8. 21.3.5.2. Tăng cường độ tương phản và màu sắc Trong khi làm việc với các thành phần RGB của một ảnh số ba màu, điểm chúng ta phải cẩn thận đó là tránh việc hỏng cân bằng màu. Thiết yếu trong tất cả các kỹ thuật xử lý ảnh trước đây đã bàn tới sẽ tạo ra một kết quả xác đáng nếu cung cấp cho các thành phần của một ảnh trong hệ HSI. Trong nhiều cách, thành phần cường độ có thể được sử dụng như một ảnh đơn sắc. Thông tin về màu sắc, được kết hợp trong các thành phần màu sắc và độ bão hoà sẽ thường được kèm theo mà không có sự phản đối. Dĩ nhiên, các phép toán hình học bất kỳ phải được thực hiện chính xác trong cùng một phương pháp với cả ba thành phần, cho dù các thành phần này có khuôn dạng RGB hay HSI. Tăng cường bão hoà. Cách thức chúng ta có thể tạo ra các màu trong một ảnh đậm hơn bằng cách nhân độ bão hoà tại mỗi điểm ảnh với một hằng số lớn hơn 1. Cũng như vậy, một hằng số nhỏ hơn 1 sẽ giảm cường độ biểu kiến của các màu. Thao tác điểm phi tính có thể sử dụng trên ảnh bão hoà, miễn là hàm biến đổi bằng 0 tại thời điểm ban đầu. Việc thay đổi độ bão hoà của các điểm ảnh với độ bão hoà xấp xỉ không có thể phá vỡ sự cân bằng màu. Sự thay đổi màu sắc. Bởi vì màu sắc là một góc, theo logic chúng ta phải thực hiện việc thêm vào một hằng số màu sắc cho mỗi điểm ảnh. Việc này có ảnh hưởng tới việc dịch chuyển màu của một đối tượng lên hay xuống. Nếu góc thêm vào hay trừ bớt đi là chỉ vài độ, quá trình sẽ “làm mát” hay “làm ấm” ảnh màu. Các góc lớn hơn sẽ thay thế mạnh mẽ sự xuất hiện của chúng. Một thao tác điểm tổng quát được thực hiện trên màu sắc ảnh sẽ gây ra khác biệt lớn về màu giữa các đối tượng trong các vùng phổ mà ở đó độ dốc của hàm biến đổi lớn hơn 1 và ngược lại. Do màu sắc là một góc, nên phép toán xử lý các ảnh màu sắc thành phần phải được xem xét tỷ lệ xám định kỳ, thừa nhận rằng, ví dụ đối với 8 bit, 255 + 1 = 0, và 0 - 1 = 255. 21.3.5.3. Khôi phục màu ảnh Ta có thể áp dụng các kỹ thuật đã được đề cập trong chương 16 cho các ảnh R, G và B riêng biệt theo sự mở rộng màu dễ hiểu. Tuy nhiên, có một số vần đề suy xét đặc biệt khi áp dụng với ảnh ba màu. Nếu một ảnh được khôi phục hay tăng cường đối với mục đích trong việc hiển thị của nó, việc nên thực hiện là nhớ chiều dài và sự yếu của mắt người. Ví dụ, chi tiết là có thể nhìn theo cường độ rõ hơn so với nhì theo màu. Viẹc làm mờ các biên sẽ bị nhiễu loạn hơn nhiều nếu nó ảnh hưởng đến cường độ chứ không phải màu sắc hay độ bão hoá. Tương tự, tính hạt (nhiếu ngãu nhiên) của một biên độ vừa phải rõ ràng theo cường độ hơn theo màu. Cuối cùng, mắt người là nhạy cảm với nhiễu hạt trong các vùng bằng phẳng hơn là trong các vùng ảnh chứa chi tiết tương phản cao. Việc này áp dụng cho cả nhiễu cường độ lẫn nhiễu màu sắc. Với những suy nghĩ trước đây, chúng ta có thể xây dựng một phác thảo tổng quát cho việc tiếp cận một sự tăng cường màu ảnh hay khôi phục. 1. Sử dụng một toán tử điểm tuyến tính để đảm bảo đó là ảnh RGB phù hợp hoàn toàn trong phạm vi tỷ lệ xám và là cân bằng màu. 2. Chuyển đổi sang khuôn dạng HSI. 3. Sử dụng một bộ lọc thông thấp hay, có lẽ tốt hơn, bộ lọc trung vị trên các ảnh màu sắc và bão hoà để giảm nhiễu ngẫu nhiên về màu sắc trong các đối tượng. Một vết mờ nào đó của các biên trong những ảnh này sẽ không còn trong sản phẩm cuối cùng, do vậy bước này có thể coi như giảm nhiễu đáng kể. Bộ lọc phải giữ được mức xám trung bình (chẳng hạn, MTF(0, 0) = 1). 437
  9. 4. Sử dụng cách tiếp cận biến thiên không gian (ví dụ các bộ lọc kết hợp tuyến tính) để khôi phục lại cường độ ảnh. Bước làm sắc nét cá biên và tăng cường chi tiết, trong khi giảm nhiễu hạt trong các vùng phẳng. 5. Sử dụng các toán tử điểm tuyến tính trên cả ba thành phần, như yêu cầu, để đảm bảo việc tận dụng tỷ lệ xám. 6. Chuyển đổi sang khuôn dạng RGB và hiển thị hay in ảnh ra. Bắt đầu với một ảnh số chất lượng tốt, với cách tiếp cận này có thể cải thiện được rất nhiều với chất lượng ảnh. 21.3.5.4. Giả màu Thuật ngữ giả màu liên quan tới việc tạo ra một ảnh màu từ một ảnh đơn sắc bằng cơ chế ánh xạ mức xám tới một điểm trong không gian màu. Việc này rất đơn giản chỉ việc gán một màu cho mỗi mức xám bằng một vài luật mà có thể lưu trữ trong một bảng tra cứu. Điểm hấp dẫn của giả màu phát phát từ thực tế là mắt người có thể phân biệt rõ nhiểu màu khác nhau hơn là có thể phân biệt rõ được độ sắc nét khác nhau của độ sáng. Do đó, trong khi chúng ta có thể ước lượng 40 tới 256 mức xám trên một màn hình đơn sắc, thì có thể nhìn thấy nhiều hình dạng hơn khi ánh xạ đến các màu khác nhau. Tuy nhiên, các kỹ thuật đơn sắc có thể làm cho những sự thay đổi không dễ mô tả có thể nhìn thấy hơn. Việc ánh xạ giả màu thường làm chúng ta hài lòng hơn nếu nó thực hiện một vài mẫu, hơn là việc ấn điịnh ngẫu nhiên một số màu. Thông thường trục mức xám ánh xạ tới một đường liên tục vẽ lên các đường cong trên không gian màu. Ánh xạ các điểm trắng và đen thông thường là rất hữu dụng. Nói chung, các ánh xạ càng phù hợp bao nhiêu càng thành công, sự đau đớn thực tế về thị giác có thể là kết quả do nhiều tham vọng trên sơ đồ ấn định màu sắc. Cơ bản một chi tiết của quá trình hiển thị ảnh, giả màu có thể được tô điểm với thuật ngữ giống như quá trình giả màu và phân tích giả màu. Một công cụ rất hữu ích cho các nhà buôn. nó thông thường sử dụng trong hệ thống quảng cáo. nó có thể mang đến cho khách hàng những hiểu biết nhanh chóng so với các hiểu biết khác về kỹ thuật hiển thị. 21.3.6. Phân tích ảnh màu Hầu như đề cập trước đây về việc phân tích ảnh đơn sắc có thể được áp dụng trực tiếp vào các ảnh màu. Tuy nhiên, có một vài điểm khác nhau đáng chú ý. 21.3.6.1. Sự bù màu Trong một số ứng dụng, mục đích là phân tách các loại đối tượng khác nhau chủ yếu và riêng về màu sắc. Ví dụ, trong kính hiển vi huỳnh quang các thành phần khác nhau của một mẫu vật sinh học (ví dụ, các thành phần khác nhau của các tế bào) bị nhiễu với các màu sắc huỳnh quang nhuộm vào. Việc phân tích thường có thể bao gồm khả năng nhì thấy các đối tượng một cách riêng rẽ, nhưng theo sự quan hệ về không gian chính xác với nhau. Nếu thủ tục chuẩn bị nhuộm màu ba thành phần hoá học của mẫu vật, ví dụ với các màu nhuộm huỳnh quang đỏ, lục và lam, ta có thể số hoá và hiển thị mẫu vật như một ảnh ba màu bình thường. Các thành phần ảnh RGB được ghi nhận như các ảnh đơn sắc, mỗi thành phần biểu diễn một loại đối tượng cụ thể. Việc này mở đường cho việc phân đoạn ảnh và đo lường đối tượng sử dụng kỹ thuật đã đề cập từ trước. 438
  10. Mở rộng và phủ chồng phổ nhạy cảm của các bộ số hoá ảnh mùa thường dùng, cũng như biến đổi phổ phát xạ của thuốc nhuộm huỳnh quang sẵn có, hiếm khi ta đạt được sự phân tách hoàn toàn ba loại đối tượng trong ba ảnh thành phần. Thông thường mỗi loại đối tượng sẽ nhìn thấy trong cả ba thành phần màu của ảnh. Mặc dù giảm độ tương phản của hai trong số chúng. Chúng ta coi hiện tượng này như là tán xạ màu. Chúng ta có thể mô phỏng tán xạ màu và ảnh hưởng của nó như phép biến đổi tuyến tính . Cho ma trận C chỉ rõ các màu được tán xạ giữa ba kênh. Sau đó mỗi phần tử Cij là các thành phần của độ sáng từ huỳnh quang j mà xuất hiện trong kênh màu i cuả ảnh số. Cho x là vec tơ 3  1 của giá trị độ sáng huỳnh quang thực sự tại một điểm ảnh cụ thể, lấy tỷ lệ như mức xám được tạo ra bởi một bộ số hoá lý tưởng. Khi đó y = Cx + B (9) Là vec tơ của các mức xám RGB được ghi nhận lại tại điểm ảnh đó bởi bộ số hoá. C là hằng số cho tán xạ màu, trong khi đó vec tơ b được dùng cho độ lệch mức đen của bộ số hoá. Tức là, bi là mức xám tương ứng với màu đen (độ sáng 0) trong kênh i. Biểu thức (9) được giải dễ dàng đối với độ sáng thực sự: x = C-1[y - b] (10) Tán xạ màu có thể do đó mà được đánh giá bằng việc nhân trước vec tơ mức xám RGB đối với mỗi điểm ảnh với nghịch đảo của ma trận tán xạ màu, sau khi mức đen đã được loại trừ khỏi từng kênh. Các phân tích từ trước giả thiết rằng thời gian phơi sáng là giống nhau đối với mỗi kênh màu, hay ít nhất nó cùng được sử dụng trong việc nghiên cứu sự điều chỉnh để quyết định ma trận tán xạ màu. Đôi khi cần thiết phải sử dụng các thời gian phơi sáng khác nhau để bù cho sự chênh lệch lớn về độ sáng giữa ba thành phần màu của mẫu. vật. Chúng ta có thể giải thích điều này theo cách dưới đây. Cho ma trận đường chéo E chỉ rõ thời gian phơi sáng liên quan được sử dụng trong mỗi kênh màu theo một sự số hoá cụ thể. Tức là, eii là tỷ lệ thời gian phơi sáng hiện thời cho kênh màu i với thời gian phơi sáng sử dụng cho ảnh điều chỉnh tán xạ màu. Khi đó biểu thức (9) trở thành y = ECx + b (11) Chúng ta có thể giải với x = C-1E-1[y - b] (12) Trong đó E là ma trận đường chéo, ma trận nghịch đảo của nó cũng là ma trận đường chéo, có các phần tử đường chéo đơn giản là các số nghịch đảo của các phần tử tương ứng của E. Hơn nữa, C-1E-1 có thể được coi như ma trận bù màu đã thay đổi: Nó đơn thuần là C-1 sau khi mỗi cột thứ i đã được chia bởi eii. Vì thế, có một cách đơn giản để điều chỉnh ma trận bù màu để giải thích cho sự thay biến thời gian phơi sáng. Trình bày trước đây giả thiết rằng là các mức xám là tuyến tính đối với độ sáng. Đối với một số camera, một phép toán điểm RGB có thể cần thiết để thiết lập điều kiện này trước bù màu. 439
  11. 21.3.6.2. Ví dụ về bù màu Hình 21-8 trình bày một ảnh RGB của các tế bào tuỷ xương người có bị vấy bẩn bằng DAPI, thuốc nhuộm màu huỳnh quang màu lam. Ảnh đã được số hoá bằng một camera truyền hình màu đặt trên một kính hiển vi huỳnh quang. Trong việc chuẩn bị, các tế bào nằm trong quá trình phân chia cũng hấp thụ FITC, thuốc nhuộm huỳnh quang màu lục. Cuối cùng, DNA định vị tại trung tâm của hai tế bào nhiễm sắc thể hình số 8 được ghi nhãn bằng Texas Red, thuốc nhuộm huỳnh quang màu đỏ. Lý tưởng mà nói, tất cả các tế bào sẽ có thể nhìn thấy trong kênh màu lam, các tế bào phân chia cũng có thể nhìn thấy trong kênh màu lục, và hai điểm trên một tế bào, tương ứng với các nhiễm sắc thể hình số 8 sẽ xuất hiện trong kênh màu đỏ. Tuy nhiên, trong hình mọi các thành phần đều xuất hiện trong tất cả các kênh do việc xếp chồng các phổ nhạy cảm của ba kênh màu. Ma trận tán xạ màu là phương tiện ghi nhận ảnh trong hình 21-8 trình bày trong bảng 21-1. Ma trận phát biểu rằng, ví dụ, chỉ 44 % của độ sáng phân tử DAPI là được ghi nhận trong kênh màu lục, trong khi 32% được đưa ra trong kênh màu lam và 24% tìm thấy theo cách của nó với kênh màu đỏ. Giá trị trong ma trận này được xác định bằng thực nghiệm từ các ảnh số của các tế bào bị vấy bẩn bằng các chất huỳnh quang đơn lẻ và chúng sẽ khác nah với những kết hợp khác của thuốc nhuộm, camera, và dụng cụ quang học. HÌNH 21-8 Hình 21-8 ảnh hiển vi huỳnh quang ba màu: (a) cường đọ; (b) đỏ; (c) lục; (d) lam BẢNG 21-1 MA TRẬN TÁN XẠ MÀU Texas Red FITC DAPI Đỏ 0.85 0.26 0.24 Lục 0.05 0.65 0.32 Lam 0.10 0.09 0.44 Ma trận bù màu C-1 đưa ra những gì phải thực hiện để việc tán xạ màu chính xác. Ma trận nghịch đảo của ma trận trong bảng 21-1 là  1.24  .45  .35  C 1   0.05 1.69  1.26 (13)   .29  .24 2.61  440
  12. Do đó, để chính xác cho ảnh kênh màu đỏ, chúng ta nên, tại mỗi điểm, thực hiện với 124% của mức xám trong ảnh kênh màu đỏ, thêm 5% giá trị cho kênh màu xanh, và trừ 29% cho kênh màu lục. Hàng thứ 2 và thứ 3 cũng như thế chỉ rõ cách để làm chính xác các ảnh kênh màu xanh và lục. Một số minh hoạ cách tính toán tại mỗi điểm trong ảnh RGB. Sử dụng ma trận lan màu trong bảng 21.1 và minh hoạ giá trị cho x và biểu thức 11 đưa ra kết quả các giá trị mức độ màu xám được ghi. 1 0 0 .85 .26 .24  201 18  251 y  ECx  b  0 1 0 .05 .65 .32 143  22  158 (14) 0 0 2 .10 .09 .44 104 20 178 Ở đây chúng ta đã giả thiết rằng đó thời gian phơi sáng gấp hai lần được sử dụng trong kênh màu lục. Khi đó biểu thức (12) khôi phục các giá trị độ sáng thực sự  1.24  0.45  0.35 1 0 0   251 18   201   x  C E y  b    0.05 1 1 1.69  1.26  0 1 0   158   22   143 (15)   0.29  0.24 2.61  0 0 0.5  178  20  104 Ma trận tích trong biểu thức (15) đơn giản là  1.24  0.45  0.35 C 1E 1   0.05 1.69  1.26  (16)  0.29  0.24 2.61  nó hoàn toàn giống như ma trận C-1, ngoại trừ thành phần trong cột thứ 3 đã bị chia đều để giải thích cho sự phơi sáng lâu hơn trong kênh màu lam. Bởi vì ma trận là giống nhau đối với mọi điểm ảnh trong ảnh, nó có thể được tính toán 1 lần và sử dụng nhiều lần lặp đi lặp lại. Hình 21-9 cho thấy kết quả của bù màu được áp dụng cho ảnh trong hình 21-8. HÌNH 21-9 Hình 21-9 Kết quả của việc bù màu: () cường độ; (b) đỏ; (c) lục; (d) lam Ở đây, ba kiểu vết bẩn khác nhau của các đối tượng đã được phân tách thành ba ảnh màu thành phần. Việc này tạo ra một công việc phân đoạn và tính toán ảnh đơn 441
  13. giản hơn nhiều. Sự bù màu cũng làm tăng độ bão hoà của ảnh màu hiển thị, vì tán xạ màu có xu hướng khử độ bão hoà của ảnh. 21.3.6.3. Phân đoạn ảnh màu Việc phân đoạn một ảnh màu bằng ngưỡng trở thành một quá trình phân chia không gian màu. Các đối tượng khác nhau trong ảnh thường tương ứng với các nhón điểm riêng biệt trong một lược đồ ba chiều xác định trong không gian RGB hay HSI. Một thiết kế bộ phân lớp Bayes ba đặc trưng có thể chứng tỏ có ích trong việc phân chia không gian. Màu sắc và độ bão hoà của một đối tượng thường bị bức chế bởi việc hấp thụ ánh sáng hay các tính chất phản xạ của chất liệu tạo ra đối tượng. Tuy nhiên, cường độ của đối tượng bị tác dộng nghiêm trọng bởi sự chiếu sáng và góc nhìn. Hai tham số màu của một sự giảm nhiễu nào đó bằng cách làm trơn hay lọc trung vị có thể có ích. 21.3.6.4. Đo lường ảnh màu Một khi sự phân đoạn được hoàn thành, thì việc xác định kích thước và khuôn dạng là giống như với ảnh đơn sắc. Tuy nhiên, bây giờ độ sáng thêm vào khía cạnh màu sắc. Ta có thể tính màu sắc trung bình và độ bão hoà trung bình của mỗi đối tượng, cũng như cường độ trung bình của nó. 21.4. TỔNG KẾT MỘT SỐ ĐIỂM QUAN TRỌNG. 1. Các ảnh đa phổ là các hàm số hoá của x, y và bước sóng quang học cho biết phổ hệ số phản xạ của đối tượng tại mỗi điểm ảnh. 2. Thông thường, trong quá trình xử lý ảnh ba màu, cân bằng màu phải đạt được với ảnh trong khuôn dạng RGB và phần lớn quá trình xử lý hay phân tích phải được thực hiện trong khuôn dạng HSI. 3. Đa số các kỹ thuật được phát triển cho các ảnh đơn sắc đều có khả năng ứng dụng cho thành phần cường độ của các ảnh số ba màu. 4. Việc tán xạ các đối tượng có màu chính thành các kênh màu khác có thể được bù bằng cách nhân các giá trị RGB với ma trận nghịch đảo của ma trận tán xạ màu. BÀI TẬP 1. Giả sử bạn có một mẫu vật kiểm tra là một hình vuông đen nằm trong một hình vuông trắng. Khi bạn số hoá mẫu vật bằng một hệ thống màu RGB riêng biệt, bạn có được các lược đồ nhị thức trong cả ba kênh. Các đỉnh được định vị như sau: R = [62,242], G = [31,251], B = [12,238]. Hệ thống này có yêu cầu cân bằng màu không? Nếu có, hãy thiết kế một phép toán điểm màu để thực hiện công việc đó. Thực hiện điều đó sao cho màu đen có mức xám 16 và màu trắng có mức xám 242. 2. Giả sử bạn số hoá một mẫu thử bao gồm bốn thanh xám đồng bộ đặt trong độ sáng từ đen sang trắng. Các giá trị HIS trung bình của bốn thanh là [H, S, I] = [259,0.51,32], [90,0.024,1.45], [82,0.116,259], [81,0.152,372]. Vẽ bốn điểm trong không gian HS. Màu nào của mỗi một rong bốn thanh sẽ xuất hiện? Bộ số hoá có cân bằng màu không? Nếu không, thì một phép toán điểm tuyến tính sẽ đặt nó trong sự cân bằng màu hay không? Nếu có, thiết kế phép toán đó. Nếu không, thiết kế một phép toán tuyến tính từng đoạn. 3. Giả sử bạn số hoá một mẫu thử bao gồm bốn thanh xám đồng bộ đặt trong độ sáng từ đen sang trắng. Các giá trị HIS trung bình của bốn thanh là [H, S, I] = 442
  14. [0,0.25,23], [101,0.16,144], [199,0.192,300], [300,0.083,416]. Vẽ bốn điểm trong không gian HS. Màu nào của mỗi một rong bốn thanh sẽ xuất hiện? Bộ số hoá có cân bằng màu không? Nếu không, thì một phép toán điểm tuyến tính sẽ đặt nó trong sự cân bằng màu hay không? Nếu có, thiết kế phép toán đó. Nếu không, thiết kế một phép toán tuyến tính từng đoạn. DỰ ÁN 1. Phát triển một chương trình cho việc chuyển đổi ảnh màu RGB sang HSI vad HSI sang RGB. Kiểm tra chương trình trên một ảnh chứa các giá trị R, G và B xa nhất. Trừ một ảnh RGB đã được chuyển đổi sang HSI và ngược lại từ ảnh ban đầu, mô tả nội dung các ảnh. 2. Thực hiện khôi phục ảnh trên một ảnh số hoá sử dụng phác thảo trong phần 21.3.5.3, chỉ lọc tĩnh (biến thiên phi không gian). Tường thuật các giới hạn thực tế về từng bước tăng cường và khối lượng cải tiến đạt được. 3. Thực hiện khôi phục ảnh trên một ảnh số hoá sử dụng phác thảo trong phần 21.3.5.3, và lọc biến thiên không gian (chẳng hạn, các bộ lọc kết hợp tuyến tính). Tường thuật các giới hạn thực tế về từng bước tăng cường và khối lượng cải tiến đạt được. 4. Phát triển một chương trình có thể vận dụng một ảnh HIS như mô tả trong phần 21.3.5.3, và sử dụng chương trình để cải thiện ảnh của một người bạn. Tường thuật lại các phương pháp và kết quả. 5. Phát triển một ứng dụng tạo ảnh giả màu. Công bố phương pháp và kết quả của nó trên một tờ báo có uy tín. Gửi cho tôi một tấm thiệp Giáng sinh với ảnh giả màu. 443
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0