Bài giảng Xử lý tín hiệu số - Chương 4: Biến đổi Z và áp dụng cho hệ thống tuyến tính bất biến rời rạc
lượt xem 4
download
Bài giảng Xử lý tín hiệu số - Chương 4: Biến đổi Z và áp dụng cho hệ thống tuyến tính bất biến rời rạc. Chương này cung cấp cho người học các kiến thức: Biến đổi trong xử lý tín hiệu; biến đổi Z, các tính chất của biến đổi Z, biến đổi Z ngược, biến đổi Z một phía,... Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Xử lý tín hiệu số - Chương 4: Biến đổi Z và áp dụng cho hệ thống tuyến tính bất biến rời rạc
- XỬ LÝ TÍN HIỆU SỐ Chương IV: BIẾN ĐỔI Z VÀ ÁP DỤNG CHO HỆ THỐNG TUYẾN TÍNH BẤT BIẾN RỜI RẠC 2008
- Nội dung Biến đổi trong xử lý tín hiệu Biến đổi Z Các tính chất của biến đổi Z Biến đổi Z ngược Biến đổi Z một phía Biểu diễn hệ thống rời rạc trong miền Z Xét tính ổn định của hệ thống
- Biến đổi trong xử lý tín hiệu Phương pháp phổ biến trong xử lý tín hiệu: biến đổi tín hiệu từ không gian tự nhiên của nó (miền thời gian) sang không gian (miền) khác. Ví dụ: biến đổi tín hiệu từ miền thời gian sang miền tần số x(n) = sin 2f0n m(f) = 1 nếu f = f0, 0 nếu f f0. x(n) = asin 2f1n + bsin 2f2n m(f) = a nếu f = f1, b nếu f = f2, 0 còn lại.
- Lựa chọn biến đổi Tín hiệu sau khi được biến đổi sẽ hội tụ trong một vài vùng của miền biến đổi thuận tiện cho việc khảo sát các đặc trưng. Phải tồn tại biến đổi ngược có thể thực hiện việc chỉnh sửa tín hiệu trong miền biến đổi và thu lại được tín hiệu đã chỉnh sửa trong không gian tự nhiên (miền thời gian) của tín hiệu.
- Định nghĩa biến đổi Z Biến đổi Z hai phía: n X (z) x(n ) z n z là một biến phức biến đổi Z thực hiện việc biến đổi tín hiệu từ miền thời gian rời rạc vào một không gian phức (miền Z). Biến đổi Z tồn tại nếu chuỗi biến đổi hội tụ. Ví dụ: biến đổi Z của (n) và của (nn0)
- Định nghĩa biến đổi Z Biến đổi Z một phía: 1 n X (z) x(n ) z n0 Biến đổi Z một phía và hai phía của tín hiệu nhân quả là như nhau.
- Ý nghĩa của biến đổi Z Với tín hiệu rời rạc, biến đổi Z đơn thuần là một cách biểu diễn khác của tín hiệu. Vai trò của biến đổi Z đối với hệ thống rời rạc tương đương với vai trò của biến đổi Laplace đối với hệ thống liên tục.
- Miền hội tụ của biến đổi Z Miền hội tụ (ROC) của biến đổi Z là tập hợp tất cả các giá trị của z mà chuỗi biến đổi x(n)zn hội tụ. Ví dụ Tiêu chuẩn Cauchy: 1 n n lim | x n | 1 x n0 n
- Miền hội tụ của biến đổi Z Áp dụng tiêu chuẩn Cauchy tiêu chuẩn hội tụ của biến đổi Z: R x | z | R x 1 n R x lim | x ( n ) | n 1 n R x 1 lim | x ( n ) | n
- Miền hội tụ của biến đổi Z Miền hội tụ của biến đổi Z là miền nằm giữa 2 đường tròn bán kính Rx và Rx+ trong mặt phẳng z. Miền hội tụ của biến đổi Z của một số loại tín hiệu: Tín hiệu có độ dài hữu hạn. Tín hiệu nhân quả có độ dài vô hạn. Tín hiệu phản nhân quả có độ dài vô hạn.
- Miền hội tụ của biến đổi Z Miền hội tụ của biến đổi Z một phía: là miền nằm ngoài đường tròn bán kính Rx trong mặt phẳng z.
- Các tính chất của biến đổi Z Tuyến tính: Z [ax (n) bx (n)] aX ( z ) bX ( z ) 1 2 1 2 Trễ: n0 Z [ x(n n )] z 0 X ( z) Co giãn trong miền z: n 1 Z [a x(n)] X (a z) ROC :| a | Rx | z || a | Rx
- Các tính chất của biến đổi Z Lật: 1 Z [ x(n)] X ( z ) 1 1 ROC : | z | Rx Rx Đạo hàm trong miền z: dX ( z ) Z [nx ( n )] z dz
- Các tính chất của biến đổi Z Biến đổi Z của tích chập: Z [ x (n) x (n)] X ( z ) X 1 2 1 2 ( z) Biến đổi Z của tương quan: 1 Z [r x1 x2 ( n )] X 1 ( z ) X 2 ( z ) Định lý giá trị đầu: x (0) lim X ( z ) z
- Biến đổi Z ngược Định lý Cauchy 1 n 1 1 ( n 0) j 2 z C dz 0 ( n 0) C là một chu tuyến (đường khép kín) có chiều dương (ngược chiều quay của kim đồng hồ) bao quanh gốc tọa độ trong mặt phẳng Z.
- Biến đổi Z ngược Biến đổi ngược của biến đổi Z (chứng minh được bằng cách sử dụng định lý Cauchy): 1 n 1 x(n) X ( z) z dz j 2 C
- Các phương pháp tính biến đổi Z Phương pháp tính tích phân theo C (sử dụng định lý phần dư của Cauchy): Nếu {zpk} là tất cả các trị cực của X(z)zn1 nằm bên trong chu tuyến C: n 1 x(n ) Res[ k X (z)z |z z p k ] Tính phần dư tại trị cực: nếu zpk là cực đơn Res[ X ( z ) z n 1 |z z pk ] ( z z pk ) X ( z ) z n 1 |z z pk
- Các phương pháp tính biến đổi Z Tính phần dư tại trị cực bội: zpk là một trị cực bội bậc sk n 1 Res[ X ( z ) z |z z p ] k s k 1 sk n 1 1 d ( z z pk ) X ( z ) z s k 1 ( s k 1)! dz z z pk
- Các phương pháp tính biến đổi Z Phương pháp khai triển chuỗi lũy thừa: Nếu X(z) khai triển được thành một chuỗi lũy thừa của z1 như sau: n X (z) n n z thì ta có x(n) = n. Cách khai triển: dùng phép chia đa thức. Chú ý: ROC của X(z) quyết định dạng của chuỗi lũy thừa.
- Các phương pháp tính biến đổi Z Phương pháp khai triển phân thức tối giản: Không giảm tổng quát, giả thiết X(z) có thể biểu diễn dưới dạng X(z) = N(z)/D(z), ở đó N(z) và D(z) là 2 đa thức với bậc của N(z) bậc của D(z). Giả sử {zp } là tất cả các trị cực của X(z). k
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Xử lý tín hiệu nâng cao (Advanced signal processing) - Chương 4: Biến đổi Fourier của tín hiệu rời rạc
62 p | 99 | 12
-
Bài giảng Xử lý tín hiệu số: Chương 1 - Lã Thế Vinh
46 p | 123 | 11
-
Bài giảng Xử lý tín hiệu nâng cao (Advanced signal processing) - Chương 2: Tín hiệu rời rạc
54 p | 87 | 8
-
Bài giảng Xử lý tín hiệu nâng cao (Advanced signal processing) - Chương: Ôn tập
16 p | 86 | 5
-
Bài giảng Xử lý tín hiệu số và ứng dụng - Chương 1: Khái niệm chung
28 p | 16 | 5
-
Bài giảng Xử lý tín hiệu số và ứng dụng - Chương 4: Vi xử lý tín hiệu số
75 p | 17 | 5
-
Bài giảng Xử lý tín hiệu số: Chương 0 - TS. Đặng Quang Hiếu
5 p | 31 | 4
-
Bài giảng Xử lý tín hiệu số: Chương 2 - ThS. Bùi Thanh Hiếu
50 p | 9 | 3
-
Bài giảng Xử lý tín hiệu: Chương 1 - PGS. TS. Trịnh Văn Loan
59 p | 10 | 3
-
Bài giảng Xử lý tín hiệu số: Phần 1 - Trường ĐH Công nghệ Sài Gòn
55 p | 20 | 3
-
Bài giảng Xử lý tín hiệu số: Chương 1 - ThS. Bùi Thanh Hiếu
25 p | 6 | 2
-
Bài giảng Xử lý tín hiệu số: Chương 3 - ThS. Bùi Thanh Hiếu
70 p | 5 | 2
-
Bài giảng Xử lý tín hiệu số: Chương 4 - ThS. Bùi Thanh Hiếu
37 p | 5 | 2
-
Bài giảng Xử lý tin hiệu số với FPGA: Chương 1 - Hoàng Trang
55 p | 4 | 2
-
Bài giảng Xử lý tin hiệu số với FPGA: Chương 2 - Hoàng Trang
24 p | 2 | 2
-
Bài giảng Xử lý tin hiệu số với FPGA: Chương 3 - Hoàng Trang
22 p | 4 | 2
-
Bài giảng Xử lý tin hiệu số với FPGA: Chương 4 - Hoàng Trang
28 p | 3 | 2
-
Bài giảng Xử lý tín hiệu số: Chương 1 - ThS. Nguyễn Thị Phương Thảo
22 p | 21 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn