S GIÁO DC VÀ ĐÀO TO
HI DƯƠNG
ĐỀ THI CHÍNH THC
7 trang)
KHO SÁT CHT LƯNG LẦN 1
Năm hc: 2023 -2024
Bài thi môn: Toán 12
Thi gian làm bài: 90 phút không k thi gian phát đề
Họ, tên thí sinh:...................................................................................S báo danh: ....................................
Câu 1: Cho hàm s
( )
y fx=
có bng biến thiên như hình vẽ bên dưới.
Hàm s
( )
y fx=
đồng biến trên khong nào dưới đây?
A.
( )
3; +∞
. B.
( )
;4−∞
. C.
( )
2; 4
. D.
( )
2; +∞
.
Câu 2: Trong các hàm số dưới đây, hàm số nào đồng biến trên
?
A.
3
21yxx=++
. B.
. C.
32
21yxx=−+
. D.
21
3
=+
x
x
y
Câu 3: Cho hàm s
42
21yx x=−− +
. Khẳng định nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng
( )
0; +∞
. B. Hàm số nghịch biến trên khoảng
( )
;0−∞
.
C. Hàm số nghịch biến trên khoảng
( )
1;1
. D. Hàm số đồng biến trên khoảng
( )
1;1
.
Câu 4: Cho hàm s
42
=++y ax bx c
có đồ th như hình vẽ bên dưới.
Giá tr cc đi ca hàm s đã cho bằng
A.
4
. B.
2
. C.
1
. D.
3
.
Câu 5: Cho hàm s
( )
y fx=
liên tc trên
và có bảng xét du ca
( )
fx
như sau:
S điểm cc tiu ca hàm s đã cho bằng
A.
2
. B.
1
. C.
3
. D.
0
.
Câu 6: Có bao nhiêu giá tr nguyên ca tham s
m
để hàm s
4 2
3
2
2
ym
xmx
+

+

= +
ba điểm cc
trị?
A. 3. B. 2. C.
5
. D. 4.
x
-2
3
+ ∞
+
0
0
+
4
2
+ ∞
x
-1
0
1
+ ∞
0
+
0
0
+
Câu 7: Cho hàm s
()fx
đo hàm
( ) ( )( )
( )
22
12 1f x xx x x
=−−
,
x∀∈
. S điểm cc tr ca
hàm s đã cho là
A.
2
. B.
3
. C.
1
. D.
0
.
Câu 8: Gọi
M
m
ln lưt là giá tr lớn nhất g trị nhỏ nht của hàm số
2
34
x
yx
=
trên đoạn
[ ]
2;3
.
Khi đó tổng
2+Mm
bằng
A.
1
5
. B.
17
2
. C.
11
2
. D.
6
.
Câu 9: Cho hàm s
( )
y fx=
liên tc trên
và có bảng biến thiên như hình dưới đây
Khi đó giá trị nh nht ca hàm s
( )
y fx=
trên đoạn
[ ]
10;10
bằng bao nhiêu?
A.
38
. B.
14
3
. C.
11
2
. D.
2
.
Câu 10: Phương trình đường tiệm cận ngang của đồ thị hàm số
1
23
x
yx
=
A.
1
2
y=
. B.
1
2
y=
. C.
3
2
y=
. D.
1
3
y=
.
Câu 11: Cho hàm s
( )
=y fx
có bng biến thiên được cho dưới đây.
Tổng s đường tim cận ngang và tiệm cận đứng ca đ th hàm s
( )
y fx=
A.
2
. B.
3
. C.
0
. D.
1
.
Câu 12: Tìm tng tt c các giá tr ca tham s
m
để đồ th m s
( )( )
1
2
x
yxmx
=++
đúng hai đường
tim cn.
A.
1
. B.
3
. C.
1
. D.
0
.
Câu 13: Đường cong trong hình vẽ là đ th ca hàm s nào dưới đây?
A.
32
42yx x=−+
. B.
32
32yx x=−−
. C.
42
21yx x=−+ +
. D.
2
41
3
x
yx=−+
.
Câu 14: Cho hàm s
( )
3
3;y ax x d a d= +−
có đồ th là đường cong trong hình vẽ.
Mệnh đề nào dưới đây đúng?
A.
0, 0ad<>
. B.
0, 0ad<<
. C.
0, 0ad><
. D.
0, 0ad>>
.
Câu 15: Tìm s giao điểm ca đ th hàm s
32
31yx x=−+ +
và đường thng
21yx= +
.
A.
3
. B.
2
. C.
1
. D.
0
.
Câu 16: Cho biu thc
( )
( )
12
21 2
aa a
Paa a
+
=+
, với
0a>
. Khẳng định nào dưới đây là đúng?
A.
1P=
. B.
1
2
Pa=
. C.
2
Pa
=
. D.
Pa=
.
Câu 17: Cho
,,abx
y
là các s thực dương,
,ab
khác
1
. Khng định nào dưới đây là đúng?
A.
log log log
a aa
xxy
y=
B.
log log .log
a aa
xy x y=
C.
( )
log log
m
m
aa
bb=
D.
log
log log
a
a
a
x
x
yy
=
Câu 18: Biết
4
log 5 a=
. Tính
25
log 20
theo
a
.
A.
25
1
log 20 2
a
a
+
=
. B.
25
1
log 20 2a
=
. C.
25
1
log 20 2
a
a
=
. D.
25
log 20 4a=
.
Câu 19: Tìm đo hàm ca hàm s:
( )
1
32
3yx x=
.
A.
( )
2
3
31
23
x
xx
. B.
2
3
1
23
x
xx
. C.
( )
1
32
1.3
2xx
. D.
( )
2
3.1
2x
.
Câu 20: Tìm tập xác định ca hàm s
( )
2
2023
logy xx=
.
A.
( )
0;1D=
. B.
( )
0;D= +∞
. C.
( ) ( )
; 0 1;D= −∞ +∞
. D.
D=
.
Câu 21: Trong các hàm số sau hàm s nào nghch biến trên
?
A.
2
1x
ye

=

. B.
( )
2
log 2yx= +
. C.
2
3
log x
. D.
1x
y
π

=

.
Câu 22: Phương trình
2
3 81
x
có nghiệm là:
A.
6x
. B.
6x
. C.
2x
. D.
2x
.
Câu 23: Nghim ca phương trình
( )
2
3
log 2 1x−=
A.
8
3
. B.
2
. C.
1
3
. D.
8
3
.
Câu 24: Phương trình


1 21
16 10.2 4 0
xx
có hai nghiệm phân biệt là
1
x
2
x
. Tng
12
xx
bng
A.
1
. B.
3
2
. C.
0
. D.
9
4
.
Câu 25: Gi
S
là tp nghim của phương trình
( ) ( )
2
33
2log 3 2 log 2 2xx−+ + =
trên
. Tổng các phn
t ca
S
bng
A.
1
. B.
10
3
. C.
8
. D.
17
3
+
.
Câu 26: Tập nghim ca bất phương trình
39
x
A.
;2
. B.
;1
. C.
1
0; 2

. D.
0; 2
.
Câu 27: Tập nghim ca bất phương trình
ln 2 0
ln 1
x
x
+<
là:
A.
2
1;.e
e



B.
2
1;.e
e



C.
( )
2
1
; ;.e
e

−∞ +∞


D.
2
1;.
e

+∞


Câu 28: Khi bát diện đều là khối đa diện đều loại nào?
A.
{ }
3; 4
. B.
{ }
4;3
. C.
{ }
3; 3
. D.
{ }
3; 5
.
Câu 29: Tổng s mặt và số cnh của hình chóp ngũ giác là
A.
16
. B.
15
. C.
12
. D.
11
.
Câu 30: Th tích
V
ca khi t din có diện tích đáy bằng
B
và chiều cao bng
h
A.
1
3
V Bh=
. B.
V Bh=
. C.
2
1
3
V Bh=
. D.
2
1
3
V Bh=
.
Câu 31: Cho hình chóp
.S ABCD
đáy
ABCD
hình vuông cạnh bng
a
,
( )
SA ABCD
,
3SA a=
. Tính thể tích khi chóp
.S ABCD
.
A.
3
3
3
a
V=
. B.
33Va=
. C.
3
Va=
. D.
3
3
a
V=
.
Câu 32: Cho hình lăng trụ đứng
.ABC A B C

đáy
ABC
là tam gác vuông ti
,B AB BC a
3AA a
. Thể tích khối lăng trụ
.ABC A B C

bng
A.
3
3
2a
. B.
3
2a
. C.
3
3a
. D.
3
1
2a
.
Câu 33: Cho hình chóp
.S ABCD
có đáy
ABCD
hình vuông cạnh
a
,
SA ABCD
2SA a
. Gi
M
là điểm nm trên cnh
CD
. Tính thể tích khi chóp
.S ABM
theo
a
.
A.
3
3
a
. B.
3
3
4
a
. C.
3
2
a
. D.
3
2
3
a
.
Câu 34: Th tích
V
khi nón có diện tích đáy bằng
4
π
và chiều cao bng
3
A.
4V
π
=
. B.
4
3
V
π
=
. C.
12V
π
=
. D.
6V
π
=
.
Câu 35: Cho hình chóp tứ giác đu
.S ABCD
có cạnh đáy
4a
chiều cao là
6a
. Th tích ca khi
nón có đỉnh
S
và đáy là đường tròn ni tiếp t giác
ABCD
bng
A.
3
8a
. B.
3
4a
. C.
3
6a
. D.
3
2a
.
Câu 36: Khi quay hình chữ nht
ABCD
xung quanh cnh
AD
thì đường gấp khúc
ABCD
to thành mt
hình trụ. Bán kính hình trụ được to thành bng đ dài đoạn thẳng nào dưới đây?
A.
AB
. B.
AC
. C.
AD
. D.
BD
.
Câu 37: Cho hình trụ có thiết diện qua trục hình vuông cạnh
2.a
Din tích toàn phn của hình trụ đã
cho bng
A.
2
6a
. B.
2
a
. C.
2
3
2
a
. D.
2
4a
.
Câu 38: Cho hình trụ
()T
hai đáy là hai hình tròn
()O
()O
, thiết din qua trc của hình trụ là hình
vuông. Gọi
A
B
là hai đim ln lưt nm trên hai đưng tròn
()O
()O
. Biết
AB a=
khong cách gia
AB
OO
bng
2
2
a
. Bán kính đáy của hình trụ
()T
bng
A.
6
4
a
. B.
22
3
a
. C.
6
2
a
. D.
3
3
a
.
Câu 39: Cho hàm s
( )
y fx=
liên tc trên
, đ th hàm s
( )
y fx
=
đưc cho như hình vẽ dưới đây.
Hàm s
( )
2yf x=
đồng biến trên khoảng nào dưới đây?
A.
( )
0;1
. B.
( )
;0−∞
. C.
( )
1; 2
. D.
( )
3; +∞
.