intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Lecture Strength of Materials I: Chapter 5 - PhD. Tran Minh Tu

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:21

23
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chapter 5 - Geometric properties of an area. The following will be discussed in this chapter: First moment of area, moment of inertia for an area, moment of inertia for some simple areas, parallel - axis theorem.

Chủ đề:
Lưu

Nội dung Text: Lecture Strength of Materials I: Chapter 5 - PhD. Tran Minh Tu

  1. STRENGTH OF MATERIALS 1/10/2013 TRAN MINH TU - University of Civil Engineering, 1 Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, Vietnam
  2. CHAPTER 5 Geometric Properties of an Area 1/10/2013
  3. Contents 5.1. Introduction 5.2. First moment of area 5.3. Moment of inertia for an area 5.4. Moment of inertia for some simple areas 5.5. Parallel - axis theorem 5.6. Examples 1/10/2013 3
  4. 5.1. Introduction Dimension, shape? 1/10/2013 4
  5. 5.2. First Moment of Area 5.2.1. Definition • The first moment of a plane A about the x- and y-axes are defined as Sx   ( A) ydA Sy   xdA ( A) • Value: positive, negative or zero • Dimension: [L3]; Unit: m3, cm3,... • Centroidal axes: are axes, which first moment of a plane A about them is zero 5.2.2. The centroid of an area • The centroid C of the area is defined as the point in the xy-plane that has the coordinates 1/10/2013 5
  6. 5.2. First Moment of Area Sy Sx xC  yC  A A yC C • If the origin of the xy-coordinate system xC is the centroid of the area then Sx=Sy=0 • Whenever the area has an axis of symmetry, the centroid of the area will lie on that axis • If the area can be subdivided in to simple geometric shapes (rectangles, circles, etc., then n n Sx   S i x S y   S yi i 1 i 1 1/10/2013 6
  7. 5.2. First Moment of Area y 5.2.3. The centroid of composite area n yC1 C1 Sy x Ci Ai C2 xC   i 1 n A A i i 1 C3 xC1 x n Sx y Ci Ai yC   i 1 n A A i i 1 1/10/2013 7
  8. 5.3. Moment of Inertia for an Area 5.3.1. Moment of inertia Ix   ( A) y 2dA Iy   ( A) x 2dA 5.3.2. Polar moment of inertia Ip  ( A)   2 dA  I x  I y 5.3.3. Product of inertia • The value of moment of inertia and polar moment of inertia always positive, but the I xy   xydA ( A) product of inertia can be positive, negative, or zero • Dimension: [L4]; Unit: m4, cm4,... 1/10/2013 8
  9. 5.3. Moment of Inertia for an Area - The product of inertia Ixy for an area will be zero if either the x or the y axis is an axis of symmetry for the area - The area with hole, then the hole’s area is given by minus sign. - The composite areas: n Sx   S n S y   S yi i x i 1 i 1 n n Ix   I i x I y   I yi i 1 i 1 1/10/2013 9
  10. 5.4. Moment of Inertia for some simple areas • Rectangular y bh3 hb3 Ix  Iy  12 12 y • Circle h x R 4 D 4 Ip    0,1D 4 x 2 32 b  R4  D4 Ix  I y    0,05D 4 4 64 D • Triangular bh3 h Ix  12 x 1/10/2013 b 10
  11. 5.5. Paralell-axis Theorem • In the xy coordinates, an area has geometric properties: Sx, Sy, Ix, Iy, Ixy. • In the uv coordinates: O'u//Ox, O'v//Oy và: u  xb v ya • Geometric properties of an area in the coordinates O'uv are: Su  S x  a. A Iu  I x  2aS x  a 2 A Sv  S y  b. A I v  I y  2bS y  b2 A Iuv  I xy  aS y  bS x  abA 1/10/2013 11
  12. 5.5. Paralell-axis Theorem If O go through centroid C, then: Iu  I x  a 2 A I v  I y  b2 A Iuv  I xy  abA C C . Radius of gyration The radius of gyration of an area about the x and y axes, and the point O are defined as Ix Iy rx  ; ry  A A 1/10/2013 12
  13. 5.5. Paralell-axis Theorem 1/10/2013 13
  14. 5.5. Paralell-axis Theorem 1/10/2013 14
  15. Example 5.1 Problem 5.6.1. An area with the shape and the dimension as shown in the figure. Determine the principal moment of inertia for area . Solution Choosing the primary coordinates x0y0 as shows in the figure. Divide the composite area to 2 simple y0 areas 1 2 1. Determine the centroid: - xC=0 (y0 – axis of symmetry) 1 2 x0 1/10/2013 15
  16. Example 5.1 - Draw the principal coordinates Cxy y0 - The Principal moment of inertia for an area: 1 2 x 0 1/10/2013 16
  17. Example 5.2 Problem 5.2. 1/10/2013 17
  18. Example 5.2 1/10/2013 18
  19. Example 5.3 1/10/2013 19
  20. Example 5.3 1/10/2013 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
10=>1