
1
Điều kiện vận dụng mô hình hồi
qui tuyến tính bội

2
Các nội dung chính
Kiểm tra các điều kiện áp dụng
mô hình
Số liệu quan sát sai lệch
Các biến giả (dummy)
Phương pháp từng bước
Sự tương tác (Interaction)

3
Các điều kiện vận dụng mô hình
Các điều kiện về dạng mô hình :
Tuyến tính của các biến độc lập so với biến phụ
thuộc
Các điều kiện về sai số mô hình (error):
Các sai số mô hình là độc lập (không tự tương quan)
và phân phối giống nhau theo phân phối chuẩn với
trung bình bằng 0 và variance s2(homoscedasticity)
Các điều kiện về các số dự đoán (prédicteurs):
Các biến độc lập không ngẫu nhiên
Các giá trị của các biến độc lập được đo lường
không có sai số
Các số dự đoán (prédicteurs) là độc lập theo đường
thẳng, (không có bội tương quan giữa các biến độc
lập - multicollinearity)
Các điều kiện về quan sát:
Tất cả các quan sát có cùng một vai trò

4
Mô hình với ảnh hưởng cố định ngược
với mô hình với ảnh hưởng ngẫu nhiên
Về nguyên tắc, hồi qui được thực hiện đối
với các mô hình có ảnh hưởng cố định
Các biến độc lập được kiểm soát
Mô hình cũng hoạt động đối với các biến
có ảnh hưởng ngẫu nhiên
Các biến độc lập là ngẫu nhiên
Về nguyên tắc, các biến này phải tuân theo
một phân phối chuẩn đa biến

5
Tuyến tính
Vẽ biểu đồ từng phần (partial plots)
Để đánh giá đặc trưng tuyến tính của
một biến Xjso với Y, chúng ta hồi qui
Y về toàn bộ các biến độc lập trừ Xj,
và chúng ta hồi qui Xjbằng các biến
độc lập khác
Chúng ta vẽ biểu đồ các phần dư
(residues) của hai hồi qui. Như vậy,
chúng ta loại bỏ ảnh hưởng của các
biến độc lập khác.