Báo cáo hóa học: " Research Article Hypersingular Marcinkiewicz Integrals along Surface with Variable Kernels on Sobolev Space and Hardy-Sobolev Space"
lượt xem 5
download
Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: Research Article Hypersingular Marcinkiewicz Integrals along Surface with Variable Kernels on Sobolev Space and Hardy-Sobolev Space
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Báo cáo hóa học: " Research Article Hypersingular Marcinkiewicz Integrals along Surface with Variable Kernels on Sobolev Space and Hardy-Sobolev Space"
- Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2011, Article ID 479576, 14 pages doi:10.1155/2011/479576 Research Article Hypersingular Marcinkiewicz Integrals along Surface with Variable Kernels on Sobolev Space and Hardy-Sobolev Space Wei Ruiying and Li Yin School of Mathematics and Information Science, Shaoguan University, Shaoguan 512005, China Correspondence should be addressed to Wei Ruiying, weiruiying521@163.com Received 30 June 2010; Revised 5 December 2010; Accepted 20 January 2011 Academic Editor: Andrei Volodin Copyright q 2011 W. Ruiying and L. Yin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ≥ Let α 0, the authors introduce in this paper a class of the hypersingular Marcinkiewicz integrals along surface with variable kernels defined by μΦ,α f x Ω Ên Ën−1 1/2 ∞ 2 Ω x, y /|y|n−1 f x − Φ |y| y dy| dt/t3 ∈ L∞ | , where Ω x, z × Lq 2α |y |≤t 0 with q > max{1, 2 n − 1 / n 2α }. The authors prove that the operator μΦ,α is bounded from Ω Sobolev space Lα Ên to Lp Ên space for 1 < p ≤ 2, and from Hardy-Sobolev space Hα Ên to p p L Ê space for n/ n α < p ≤ 1. As corollaries of the result, they also prove the Lα R − L2 Rn ˙ p n 2 n boundedness of the Littlewood-Paley type operators μΦ,α,S and μ∗,Φ which relate to the Lusin Ω Ω,α,λ ∗ area integral and the Littlewood-Paley gλ function. 1. Introduction Let Ên n ≥ 2 be the n-dimensional Euclidean space and Ën−1 be the unit sphere in Ên equipped with the normalized Lebesgue measure dσ dσ · . For x ∈ Ên \ {0}, let x x/|x|. Before stating our theorems, we first introduce some definitions about the variable kernel Ω x, z . A function Ω x, z defined on Ên × Ên is said to be in L∞ Ên × Lq Ën−1 , q ≥ 1, if Ω x, z satisfies the following two conditions: Ω x, z , for any x, z ∈ Ên and any λ > 0; 1 Ω x, λz 1/q y, z |q dσ z Ω supr ≥0, y∈Ên Ën−1 |Ω rz < ∞. Ên ×Lq Ën−1 2 L∞ In 1955, Calderon and Zygmund 1 investigated the Lp boundedness of the singular ´ integrals TΩ with variable kernel. They found that these operators connect closely with the
- 2 Journal of Inequalities and Applications problem about the second-order linear elliptic equations with variable coefficients. In 2002, Tang and Yang 2 gave Lp boundedness of the singular integrals with variable kernels associated to surfaces of the form {x Φ |y| y }, where y y/|y| for any y ∈ Ên \ {0} n ≥ Φ 2 . That is, they considered the variable Calderon-Zygmund singular integral operator TΩ ´ defined by Ω x, y Φ p·v· f x − Φ y y dy. TΩ f x 1.1 n Ên y On the other hand, as a related vector-valued singular integral with variable kernel, the Marcinkiewicz singular with rough variable kernel associated with surfaces of the form {x Φ |y| y } is considered. It is defined by ∞ 1/2 2 dt μΦ f x Φ FΩ,t x , 1.2 Ω t3 0 where Ω x, y Φ f x − Φ y y dy, FΩ,t x 1.3 n−1 y |y|≤t Ω x, z d σ z 0. 1.4 Ën−1 |y|, we put μΦ If Φ | y | μΩ . Historically, the higher dimension Marcinkiewicz Ω integral operator μΩ with convolution kernel, that is Ω x, z Ω z , was first defined and studied by Stein 3 in 1958. See also 4–6 for some further works on μΩ with convolution kernel. Recently, Xue and Yabuta 7 studied the L2 boundedness of the operator μΦ with Ω variable kernel. Theorem 1.1 see 7 . Suppose that Ω x, y is positively homogeneous in y of degree 0, and satisfies 1.4 and 1/q supy∈Ên Ën−1 |Ω y, z |q dσ z < ∞, for some q > 2 n − 1 /n. Let Φ be a positive 2 and monotonic (or negative and monotonic) C1 function on 0, ∞ and let it satisfy the following conditions: i δ ≤ |Φ t / tΦ t | ≤ M for some 0 < δ ≤ M < ∞; ii Φ t is monotonic on 0, ∞ . Then there is a constant C such that μΦ f ≤ C f 2 , where constant C is independent of f . Ω 2 Since the condition 2 implies 2 , so the L2 Ên boundedness of μΦ holds if Ω ∈ Ω L Ê × Lq Ën−1 with q > 2 n − 1 /n. ∞ n Our aim of this paper is to study the hypersingular Marcinkiewicz integral μΦ,α along Ω surfaces with variable kernel Ω, and with index α ≥ 0, on the homogeneous Sobolev space
- Journal of Inequalities and Applications 3 Lα Ên for 1 < p ≤ 2 and the homogeneous Hardy-Sobolev space Hα Ên p p for some n/ n α < p ≤ 1. Let FΩ,t x be as above, we then define the operators μΦ,α by Φ Ω ∞ 1/2 dt 2 μΦ,α f x Φ α ≥ 0. FΩ,t x , 1.5 Ω t3 2α 0 Our main results are as follows. Theorem 1.2. Suppose that α ≥ 0, Ω x, y satisfies 1.4 and Ω ∈ L∞ Ên × Lq Ën−1 with q > max{1, 2 n − 1 / n 2α }. Let Φ be a positive and increasing C1 function on 0, ∞ and let it satisfy the following conditions: i Φt tΦ t ; ii 0 ≤ Φ t ≤ W on 0, ∞ . Then there is a constant C such that μΦ,α f Ên ≤ C f Ên , where constant C is independent Ω L2 L2 α of f . Theorem 1.3. Suppose 0 < α < n/2, and that Ω ∈ L∞ Ên × Lq Sn−1 , with q > max{1, 2 n − 1 / n 2α }, and satisfies 1.4 . Let Φ be a positive and increasing C1 function on 0, ∞ and let it satisfy the following conditions: i Φt tΦ t ; ii 0 < Φ t ≤ 1, Φ 0 0. α < p ≤ 1, there is a constant C such that μΦ,α f Ên ≤ C f Ên , Then, for n/ n p Ω Hα Lp Ê Ê p where constant C is independent of any f ∈ ∩S n n . Hα Furthermore, our result can be extended to the Littlewood-Paley type operators μΦ,α,S Ω μ∗,Φ with variable kernels and index α ≥ 0, which relate to the Lusin area integral and and Ω,α,λ ∗ Φ the Littlewood-Paley gλ function, respectively. Let FΩ,t x be as above, we then define the Ên operators μΦ,α,S and μ∗,Φ for f ∈ S , respectively by Ω Ω,α,λ 1/2 dydt 2 μΦ,α,S Φ fx FΩ,t y , Ω tn 3 2α Γx ⎛ ⎞1/2 1.6 λn dydt ⎠ t 2 ⎝ μ∗,Φ f x Φ FΩ,t y , Ω,α,λ x−y Ê tn 3 2α t n1 Ên with λ > 1, where Γ x { y, t ∈ : |x − y| < t}. As an application of Theorem 1.2, we 1 have the following conclusion. Theorem 1.4. Under the assumption of Theorem 1.2, then Theorem 1.2 still holds for μΦ,α,S and Ω μ∗,Φ . Ω,α,λ By Theorems 1.2 and 1.3 and applying the interpolation theorem of sublinear operator, p we obtain the Lα − Lp boundedness of μΦ,α . Ω
- 4 Journal of Inequalities and Applications Corollary 1.5. Suppose 0 < α < n/2, and that Ω ∈ L∞ Ên × Lq Sn−1 , q > max{1, 2 n − 1 / n 2α }, and satisfies 1.4 . Let Φ be given as in Theorem 1.3. Then, for 1 < p ≤ 2, there exists an absolute positive constant C such that μΦ,α f ≤C f Ên , 1.7 Ên p Ω Lα Lp Ên Ên p for all f ∈ Lα ∩S . Remark 1.6. It is obvious that the conclusions of Theorem 1.2 are the substantial improve- ments and extensions of Stein’s results in 3 about the Marcinkiewicz integral μΩ with convolution kernel, and of Ding’s results in 8 about the Marcinkiewicz integral μΩ with variable kernels. Remark 1.7. Recently, the authors in 9 proved the boundedness of hypersingular p Marcinkiewicz integral with variable kernels on homogeneous Sobolev space Lα Rn for 1 < p ≤ 2 and 0 < α < 1 without any smoothness on Ω. So Corollary 1.5 extended the results in 9, Theorem 5 . Throughout this paper, the letter C always remains to denote a positive constant not necessarily the same at each occurrence. 2. The Bounedness on Sobolev Spaces Before giving the definition of the Sobolev space, let us first recall the Triebel-Lizorkin space. Fix a radial function ϕ x ∈ C∞ satisfying supp ϕ ⊆ {x : 1/2 < |x| ≤ 2} and 0 ≤ ϕ x ≤ 1, and ϕ x > c > 0 if 3/5 ≤ |x| ≤ 5/3. Let ϕj x ϕ 2j x . Define the function ψj x by F ψj ξ ϕj ξ , such that F ψj ∗ f ξ F f ξ ϕj ξ . For 0 < p, q < ∞, and α ∈ Ê, the homogeneous Triebel-Lizorkin space Fp is the set of ˙ α,q all distributions f satisfying ⎧ ⎫ ⎪ ⎪ ⎨ ⎬ 1/q q Ên Ên ˙ α,q 2−αk ψk ∗ f f ∈S
- Journal of Inequalities and Applications 5 For 0 < p ≤ 1, we define the homogeneous Hardy-Sobolev space Hα Ên by Hα Ên p p Ê . It is well known that H p Ên Fp ,2 Ên for 0 < p ≤ 1, one can refer 10 for the Fp 2 ˙ α, ˙0 n details. Next, let us give the main lemmas we will use in proving theorems. Lemma 2.1 see 11 . Suppose that n ≥ 2 and f ∈ L1 Ên ∩ L2 Ên has the form f x f0 |x| P x where P x is a solid spherical harmonic polynomial of degree m. Then the Fourier transform of f has the form F f x F0 |x| P x , where ∞ 2πi−m r − n 2m−2 /2 2πrs s n 2m /2 F0 r f0 s J n ds, 2.4 2m−2 /2 0 |ξ|, Jm s is the Bessel function. and r Lemma 2.2 see 12 . For λ n − 2 /2, and −λ ≤ α ≤ 1, there exists C > 0 such that for any h ≥ 0 and m 1, 2, . . ., h Jm λ t C dt ≤ λ α . 2.5 tλ α m 0 Lemma 2.3. Let α ≥ 0, λ n − 2 /2, Φ is a C1 function on 0, ∞ and let it satisfy the conditions (i) and (ii) in Theorem 1.2. ∞ 1/2 |Nε f x |2 dε/ε1 2α Denote gα f x , if 0 Φ ε |ξ | Jm λ t F Nε f ξ dt · F f ξ . 2.6 tλ 1 0 ≤ C/mλ 1α Then there exists a constant C independent of m, such that gα f for every f L2 L2 integer m ∈ Æ , m > α. α |x | Proof. Let η |x| t /tλ 1 Jm dt, then we have λ 0 ∞ dε 2 2 gα f Nε f x dx 2 Ê ε1 2α n 0 ∞ dε 2 η Φ ε |ξ | F f ξ dξ Ê ε1 2α n 0 2.7 ∞ 2 β dβ 2α ηΦ |ξ | F f ξ |ξ| dξ 1 2α |ξ | Ên β 0 ∞ 2 β dβ 2 |ξ|2α dξ. ηΦ Ff ξ |ξ | |ξ | Ê β1 2α n 0 ∞ 1α2 2 So it suffices to show η Φ β/|ξ| |ξ| ≤ C/mλ dβ/β1 2α . 0 ∞ ∞ m/2 Decompose this integral into two parts : I1 I2 . 0 0 m/2
- 6 Journal of Inequalities and Applications For I2 , by using Lemma 2.2 and Φ t tΦ t , we can get 2 ∞ Φ β/|ξ | |ξ | dβ Jm λ t I2 dt β1 2α tλ 1 m/2 0 ∞ dβ C 2.8 ≤ β1 2α m2λ 2 m/2 C ≤ . m2λ 2 2α For the other part I1 , applying Stirling’s formula, we have √ √ 2πxx−1/2 e−x ≤ Γ x ≤ 2 2πxx−1/2 e−x . 2.9 Also in 13 , the authors proved the following inequality t/2 ν |J ν t | ≤ . 2.10 Γν 1 So by 2.9 and 2.10 , 0 ≤ α < α 1 ≤ m, and noting that Φ t ≤ Wt, we have 2 Φ β/|ξ | |ξ | m/2 dβ Jm λ t I1 dt β1 2α tλ 1 0 0 2 Φ β/|ξ | |ξ | m/2 |J m λ t | dβ ≤ dt β1 2α tλ 1 0 0 2 Φ β/|ξ | |ξ | m λ m/2 dβ 1 t ≤ dt 2λ Γ2 m β1 2α 22m tλ 1 λ 1 0 0 2m m/2 β dβ 1 ≤ Φ |ξ | 2λ Γ2 m β1 2α 22m 2.11 λ 1 0 2m m/2 e2m 2λ 2 β dβ ≤ Φ |ξ| β1 2α−2m 2m 2λ 1 2π 22m 2λ m λ 1 0 m/2 e2m 2λ 2 dβ ≤C 2α−2m β1 2m 2λ 1 2π 22m 2λ m λ 1 0 e 1 2m 2λ 2 ≤C m2α 2λ 2 4 C ≤ . m2α 2λ 2 So far we can deduce the desired conclusion of Lemma 2.3.
- Journal of Inequalities and Applications 7 Proof of Theorem 1.2. The basic idea of proof can go back to 14 , for recently papers, one see 8, 15 . By the same argument as in 1 , let {Ym,j } m ≥ 1, j 1, 2, . . . , Dm denote the complete system of normalized surface spherical harmonics. See 14 for instance, we can decompose Ω x, y as following: ∞ Dm Ω x, y am,j x Ym,j y is a finite sum. 2.12 m 1j 1 Denote ⎛ ⎞1/2 Dm am,j x ⎝ 2⎠ am x am,j x , bm,j x , 2.13 am x j1 then we get ∞ Dm Dm Ω x, y 2 bm,j x 1, am x bm,j x Ym,j y . 2.14 j1 m1 j1 Then, applying Holder inequality twice, we have for any 0 < ε < 1 that ¨ 2 ∞ ∞ Ym,j y dt 2 μΦ,α f x f x − Φ y y dy bm,j x Ω n−1 t3 2α |y|≤t m 1 y 0 ∞ ∞ a2 x m−ε 1 ≤ 2α mε 1 2α m m1 m1 2 ∞ Dm Ym,j y dt × f x − Φ y y dy bm,j x n−1 t3 2α y |y|≤t j 1 0 ⎛ ⎞ ∞ ∞ ∞ Dm ⎝ bm,j x ⎠ a2 x m−ε 1 ≤ 2α mε 1 2α 2 2.15 m 0 m1 m1 j1 2 Dm Ym,j y dt × f x − Φ y y dy n−1 t3 2α |y|≤t y j1 ∞ ∞ a2 x m−ε 1 2α mε 1 2α m m1 m1 2 ∞ Dm Ym,j y dt × f x − Φ y y dy . n−1 t3 2α |y|≤t y 0 j1
- 8 Journal of Inequalities and Applications By 14, page 230, equation 4.4 , we can observe that the series in the first parenthesis on the right-hand side of the inequality above, for each x fixed, is equal to Ω x, · 2 2 Ën−1 , L −γ where L2 γ Ën−1 is the Sobolev space on Ën−1 with γ ε 1/2 α for any 0 < ε < 1. So if we − take ε sufficiently close to 1, then by the Sobolev imbedding theorem Lq ⊂ L2 γ , we have − 1/2 a2 x m−ε 1 ≤C Ω Ên ×Lq Ën−1 : C Ω 2α 2.16 L∞ m m with q > max{1, 2 n − 1 / n 2α }. By Fourier transform and 2.16 , we get 2 ∞ ∞ Dm Ym,j y dt 2 μΦ,α f 2 ≤C Ω f x − Φ y y dy dx mε 1 2α Ω n−1 Ê t3 2α 2 |y|≤t y n 0 m1 j1 2 ∞ ∞ Dm Ym,j y dt 2 ≤C Ω F f · − Φ y y dy ε 1 2α m ξ dξ n−1 Ê t3 2α |y|≤t y n 0 m1 j1 ∞ Dm 2 μΦ,j,α f 2 :C Ω mε 1 2α . Ω 2 m1 j1 2.17 For μΦ,j,α f , we have Ω 2 ∞ Ym,j y dt 2 μΦ,j,α f f x − Φ y y e−2πix·ξ dx dy dξ Ω n−1 Ên Ên t3 2α 2 |y|≤t y 0 ∞ Ym,j y e−2πiΦ |y| y ·ξ n−1 Ên |y|≤t y 0 2 dt f x − Φ y y e−2πi x−Φ |y| y ·ξ × dx dy dξ 2.18 Ê t3 2α n 2 ∞ Ym,j y dt e−2πiΦ |y| y ·ξ dy 2 Ff ξ dξ n−1 Ê t3 2α |y|≤t y n 0 2 ∞ Ym,j y 1 dt −2πiΦ |y| y ·ξ 2 Ff ξ e dy dξ. n−1 Ê t1 α t |y|≤t y n 0
- Journal of Inequalities and Applications 9 For the integral on the right hand side of the above inequality, by changing of variable, we can get Ym,j y 1 e−2πiΦ |y| y ·ξ dy n−1 t1 α |y|≤t y t 1 Ym,j y e−2πiΦ s y ·ξ dy ds Ën−1 t1 α 0 2.19 Φt 1 Ym,j y e−2πiγ y ·ξ Φ−1 γ dy dγ Ën−1 t1 α 0 Ym,j y 1 e−2πiy·ξ Φ−1 y dy. n−1 t1 α y |y|≤Φ t So we have 2 ∞ Ym,j y 1 dt 2 μΦ,j,α −2πiy·ξ −1 2 Φ Ff ξ f e y dy dξ. Ω n−1 Ên t1 α t 2 |y|≤Φ t y 0 2.20 Φ,m,j Pm,j x · |x|−n−m 1 χ|x|≤Φ t x Φ−1 |x| t−1−α , Ym,j x |x|m and ϕt,α Put Pm,j x x we can deduce from Lemma 2.1 that Φ,m,j Ym,j ξ · |ξ|m F0 |ξ| , F ϕt,α Pm,j |ξ| · F0 |ξ| ξ 2.21 where Φt 2πi−m r − n/2 −m t−1−α s−n−m Φ−1 s 1 1 2πrs s n/2 m F0 r J n/2 ds m−1 0 Φt 2πi−m r − n/2 −m 1 t−1−α s− n/2 2πrs d Φ−1 s 1 J n/2 m−1 0 2.22 2πr Φ β t J n/2 m−1 −m − n/2 −m 1 −1−α 2πi r t dβ n/2 −1 Φβ 0 2πr Φ β −α t J n/2 n/2 −m −m t m−1 2π i r dβ. n/2 −1 t 2πr Φ β 0
- 10 Journal of Inequalities and Applications Hence, we have 2 μΦ,j,α f Ω 2 ∞ dt 2 Φ,m,j ∗f x ϕt,α dx Ên t 0 ∞ dt 2 Φ,m,j F ϕt,α ∗f ξ dξ Ên t 0 2 ∞ 2π |ξ|Φ β −α t J n/2 n/2 t dt m−1 Ym,j ξ |ξ|m i−m |ξ|−m 2π 2 ≤ Ff ξ dβ dξ n/2 −1 Ê t t 2 π |ξ |Φ β n 0 0 2 ∞ 2 π |ξ |Φ β t J n/2 1 dt m−1 2 ≤C Ff ξ Ym,j ξ dβ dξ. n/2 −1 Ê t1 2α t 2π |ξ|Φ β n 0 0 2.23 |Ym,j z |2 ∼ mn−2 . Dm By 14 , we know that j1 So we can get 2 ∞ 2π |ξ|Φ β Dm t J n/2 1 dt 2 m−1 μΦ,j,α f ≤ Cmn−2 2 Ff ξ dβ dξ. Ω n/2 −1 Ên t1 2α t 2 π |ξ |Φ β 2 0 0 j1 2.24 n/2 − 1, ρ 2π |ξ|Φ β and note that Φ t tΦ t , we can deduce that Set λ 2π |ξ|Φ β t J n/2 1 m−1 U: dβ n/2 −1 t 2 π |ξ |Φ β 0 2π |ξ |Φ t Jm ρ 1 1 λ 2.25 dρ 2π |ξ|Φ Φ−1 ρ/2π |ξ| ρλ t 0 2π |ξ |Φ t Jm ρ ρ 1 λ Φ−1 dρ. 2π |ξ| ρλ 1 t 0 Noting that Φ t is increasing, by using the second mean-value theorem, we get, for some 0 ≤ η < 2π |ξ|Φ t , 2π |ξ |Φ t Jm ρ 1 −1 λ |U | ≤ Φ Φt dρ ρλ 1 t η 2.26 2π |ξ |Φ t Jm ρ λ ≤ dρ . ρλ 1 0
- Journal of Inequalities and Applications 11 From 2.26 , it follows that 2 ∞ 2π |ξ |Φ t Dm Jm ρ dt 2 λ μΦ n−2 ≤ Cm dρ · F f ξ f dξ. 2.27 m,j,α Ên t1 2α ρλ 1 2 0 0 j1 Thus using Lemma 2.3, we can deduce the desired conclusion of Theorem 1.2. Proof of Theorem 1.4. First, we know that μΦ,α,S f x ≤ 2λn μ∗,Φ f x . On the other hand, Ω Ω,α,λ 2 μ∗,Φ f Ω,α,λ 2 λn 2 Ω x, z t 1 dzdt f x − Φ |z| z dz dx n−1 x−y Ê tn 1 2α |z| t t |z|≤t n1 n R ⎛ ⎞ λn 2 ∞ Ω x, z ⎝1 t 1 dzdt dx⎠ f x − Φ |z| z dz n−1 x−y Ê tn Ên t1 2α |z| t t |z|≤t n 0 2 ≤ C μΦ,α f . Ω 2 2.28 Thus, using Theorem 1.2, we can finish Theorem 1.4. 3. The Bounedness on Hardy-Sobolev Spaces In order to prove the boundedness for operator μΦ,α on Hardy-Sobolev spaces and prove Ω Theorem 1.3, we first introduce a new kind of atomic decomposition for Hardy-Sobolev space as following which will be used next. Definition 3.1 see 16 . For α ≥ 0, the function a x is called a p, 2, α atom if it satisfies the following three conditions: 1 supp a ⊂ B with a ball B ⊂ Ên ; ≤ |B| 1/2 − 1/p ; 2 a L2 α 0, for any polynomial P x of degree ≤ N n 1/p − 1 α . 3 Ên a x P x Ên p By 16 , we have that every f ∈ Hα can be written as a sum of p, 2, α atoms aj x , that is, f λj aj . 3.1 j
- 12 Journal of Inequalities and Applications Proof of Theorem 1.3. Similar to the argument of Lemma 3.3 in 17 and using above atomic decomposition, it suffices to show that p μΦ,α a ≤ C, 3.2 Ω Lp with the constant C independent of any p, 2, α atom a. Assume supp a ⊂ B 0, R . We first note that p p p μΦ,α a μΦ,α a x μΦ,α a x ≤ dx dx Ω Ω Ω Lp |x|≤8R |x|>8R 3.3 : U1 U2 . For U1 , using Theorem 1.2, it is not difficult to deduce that p U1 ≤ C μΦ,α a Rn 1− p/2 ≤ C a p Rn 1− p/2 Ω L2 L2 α 3.4 p/2 −1 Rn 1− p/2 ≤ C. ≤ CRn For U2 , we first consider the case n/ n α < p < 1, according to 15, Lemma 5.5 , for 0 < α < n/2 and p, 2, α atom a with support B B 0, R , one has |a x |dx ≤ CRn− n/p α . 3.5 B Using Minkowski inequality and Holder inequality for integrals, and 3.5 , we can get ¨ p μΦ,α a x U2 dx Ω |x|>8R ⎛ ⎞p/2 2 ∞ Ω x, y dt ⎠ ⎝ a x − Φ y y dy dx 3.6 n−1 t3 2α |y|≤t y |x|>8R 0 p Ω x, y ≤ a x−Φ y y dy dx. nα Ên y |x|>8R
- Journal of Inequalities and Applications 13 For the integral on the right hand side of the above inequality, by changing of variable and noting that 0 < Φ t ≤ 1, Φ 0 0, we can get Ω x, y a x−Φ y y dy nα Ên y Ω x, y R a x−Φ r y dr dy Ën−1 r1 α 0 ΦR Ω x, y 1 a x − γy dγ dy Φ−1 Φ Ën−1 1α Φ−1 γ γ 0 Φ−1 γ ΦR Ω x, y a x − γy dγ dy Ën−1 1α γ Φ−1 γ 0 3.7 ΦR Ω x, y a x − γy dγ dy α Ën−1 Φ−1 γ γ 0 Ω x, y a x − y dy n α Φ−1 y y |y|≤Φ R Ω x, x − y a y dy n α Φ−1 x − y x−y |x−y|≤Φ R Ω x, x − y ≤ a y dy. nα x−y |x−y|≤Φ R By 3.7 , we can get p ∞ Ω x, x − y U2 ≤ a y dy dx nα Ên x−y 2j R
- 14 Journal of Inequalities and Applications As for p 1, similar to the argument of n/ n α < p < 1, we can easily get U2 ≤ C. So far the proof of Theorem 1.3 has been finished. Acknowledgments This project supported by the National Natural Science Foundation of China under Grant no. 10747141, Zhejiang Provincial National Natural Science Foundation of China under Grant no. Y604056, and Science Foundation of Shaoguan University under Grant no. 200915001. References 1 A. P. Calderon and A. Zygmund, “On a problem of Mihlin,” Transactions of the American Mathematical ´ Society, vol. 78, pp. 209–224, 1955. 2 L. Tang and D. Yang, “Boundedness of singular integrals of variable rough Calderon-Zygmund ´ kernels along surfaces,” Integral Equations and Operator Theory, vol. 43, no. 4, pp. 488–502, 2002. 3 E. M. Stein, “On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz,” Transactions of the American Mathematical Society, vol. 88, pp. 430–466, 1958. 4 X. X. Tao and R. Y. Wei, “Boundedness of commutators related to Marcinkiewicz integrals with variable kernels in Herz-type Hardy spaces,” Acta Mathematica Scientia, vol. 29, no. 6, pp. 1508–1517, 2009. 5 D. Fan and S. Sato, “Weak type 1, 1 estimates for Marcinkiewicz integrals with rough kernels,” The Tohoku Mathematical Journal, vol. 53, no. 2, pp. 265–284, 2001. 6 M. Sakamoto and K. Yabuta, “Boundedness of Marcinkiewicz functions,” Studia Mathematica, vol. 135, no. 2, pp. 103–142, 1999. 7 Q. Xue and K. Yabuta, “L2 -boundedness of Marcinkiewicz integrals along surfaces with variable kernels: another sufficient condition,” Journal of Inequalities and Applications, vol. 2007, Article ID 26765, 14 pages, 2007. 8 Y. Ding, C.-C. Lin, and S. Shao, “On the Marcinkiewicz integral with variable kernels,” Indiana University Mathematics Journal, vol. 53, no. 3, pp. 805–821, 2004. 9 J. Chen, Y. Ding, and D. Fan, “Littlewood-Paley operators with variable kernels,” Science in China Series A, vol. 49, no. 5, pp. 639–650, 2006. 10 M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, vol. 79 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Washington, DC, USA, 1991. 11 E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, USA, 1971, Princeton Mathematical Series, No. 3. 12 Y. Ding and R. Li, “An estimate of Bessel function and its application,” Science in China Series A, vol. 38, no. 1, pp. 78–87, 2008. 13 N. E. Aguilera and E. O. Harboure, “Some inequalities for maximal operators,” Indiana University Mathematics Journal, vol. 29, no. 4, pp. 559–576, 1980. 14 A.-P. Calderon and A. Zygmund, “On singular integrals with variable kernels,” Applicable Analysis, ´ vol. 7, no. 3, pp. 221–238, 1977-1978. 15 J. Chen, D. Fan, and Y. Ying, “Certain operators with rough singular kernels,” Canadian Journal of Mathematics, vol. 55, no. 3, pp. 504–532, 2003. 16 Y.-S. Han, M. Paluszynski, and G. Weiss, “A new atomic decomposition for the Triebel-Lizorkin ´ spaces,” in Harmonic Analysis and Operator Theory (Caracas, 1994), vol. 189 of Contemporary Mathematics, pp. 235–249, American Mathematical Society, Providence, RI, USA, 1995. 17 S. Hofmann and S. Mayboroda, “Hardy and BMO spaces associated to divergence form elliptic operators,” Mathematische Annalen, vol. 344, no. 1, pp. 37–116, 2009.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Báo cáo hóa học: " Research Article On the Throughput Capacity of Large Wireless Ad Hoc Networks Confined to a Region of Fixed Area"
11 p | 80 | 10
-
Báo cáo hóa học: "Research Article Are the Wavelet Transforms the Best Filter Banks for Image Compression?"
7 p | 76 | 7
-
Báo cáo hóa học: "Research Article Detecting and Georegistering Moving Ground Targets in Airborne QuickSAR via Keystoning and Multiple-Phase Center Interferometry"
11 p | 65 | 7
-
Báo cáo hóa học: "Research Article Cued Speech Gesture Recognition: A First Prototype Based on Early Reduction"
19 p | 68 | 6
-
Báo cáo hóa học: " Research Article Practical Quantize-and-Forward Schemes for the Frequency Division Relay Channel"
11 p | 70 | 6
-
Báo cáo hóa học: " Research Article Breaking the BOWS Watermarking System: Key Guessing and Sensitivity Attacks"
8 p | 58 | 6
-
Báo cáo hóa học: " Research Article A Fuzzy Color-Based Approach for Understanding Animated Movies Content in the Indexing Task"
17 p | 60 | 6
-
Báo cáo hóa học: " Research Article Some Geometric Properties of Sequence Spaces Involving Lacunary Sequence"
8 p | 52 | 5
-
Báo cáo hóa học: " Research Article Eigenvalue Problems for Systems of Nonlinear Boundary Value Problems on Time Scales"
10 p | 60 | 5
-
Báo cáo hóa học: "Research Article Exploring Landmark Placement Strategies for Topology-Based Localization in Wireless Sensor Networks"
12 p | 76 | 5
-
Báo cáo hóa học: " Research Article A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition"
10 p | 51 | 5
-
Báo cáo hóa học: "Research Article Color-Based Image Retrieval Using Perceptually Modified Hausdorff Distance"
10 p | 54 | 5
-
Báo cáo hóa học: "Research Article Probabilistic Global Motion Estimation Based on Laplacian Two-Bit Plane Matching for Fast Digital Image Stabilization"
10 p | 68 | 4
-
Báo cáo hóa học: " Research Article Hilbert’s Type Linear Operator and Some Extensions of Hilbert’s Inequality"
10 p | 37 | 4
-
Báo cáo hóa học: "Research Article Quantification and Standardized Description of Color Vision Deficiency Caused by"
9 p | 76 | 4
-
Báo cáo hóa học: " Research Article An MC-SS Platform for Short-Range Communications in the Personal Network Context"
12 p | 41 | 4
-
Báo cáo hóa học: "Research Article On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces"
12 p | 56 | 4
-
Báo cáo hóa học: " Research Article Approximation Methods for Common Fixed Points of Mean Nonexpansive Mapping in Banach Spaces"
7 p | 46 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn