Bất đẳng thức tích phân toán 12
lượt xem 58
download
Tài liệu tham khảo - Chuyên đề bất đẳng thức tích phân
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bất đẳng thức tích phân toán 12
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Chöùng minh raèng : 1 1 π π 3π π 1 1. dx ∫ 4 4. ln 2 < ∫ dx < 3 − 2 sin 2 x 2 4 1+ x x π 0 4 4 1 3 cot g 1 π π 1 5. ∫ dx 2. dx ∫ 3 2 x + x+1 8 12 x 3 π 0 4 1 1 π x 1 π π 3. dx ∫ 1 2 6. dx ∫ 2 6 0 x + x + x3 + 3 5 4 18 6 1− x 0 93 Baøi giaûi : 3π 1 1 1 1 π sin 2 x 1 ⇒ 1 2 sin 2 x 2 ⇒ 1 3 − 2 sin 2 x 2 ⇒ 1. x sin x 1 ⇒ 1 ⇒ 3 − 2 sin 2 x 4 4 2 2 2 1 3π 1 1 π π 3π 3π 3π ⇒ ∫π 4 dx ∫π 4 dx ∫ π 4 dx ⇒ ∫π 4 3 − 2 sin 2 xdx 2 4 2 24 4 3 − 2 sin x 4 4 1 3 cot gx 1 3 cot gx 4 3 π3 π cot gx 4 π3 π π 2. x dx ∫π 3 dx dx π ∫π 4 π ∫π 4 ⇒ ⇒ ⇒ 4 x x 3 1 4 3 π π 4 π x π 3 π cot gx 1 ∫π 4 x dx 3 3 ⇒ 12 Baøi toaùn naøy coù theå giaûi theo phöông phaùp ñaïo haøm. 1 3. 0 x < 1 ⇒ 0 x 6 .... x 2 < 1 ⇒ −1 − x 2 − x 6 0 ⇒ 0 1 − x 2 1 − x 6 1 ⇒ 1 − x 2 1 − x6 1 2 1 1 1 1 1 dx I ⇒1 ⇒ ∫ 2 dx ∫ 2 1− x 1− x 1 − x6 6 2 0 0 1 π π 1 Vôùi I = ∫ 2 dx Ñaët x = sin t ; t ∈ − ; ⇒ dx = cos tdt 2 2 1 - x2 0 1 x 0 1 1 cos tdt π π 1 2 1 1 = ∫ 2 dt = Vaäy ∫0 1 − x 6 dx 6 ⇒I=∫ 2 2 6 2 π t 0 1 − sin 2 t 0 0 6 x 1 ⇒ x2 x x x ⇒ 1 + x2 1 + x x 1 + x 4. 0 x 1 ⇒ x 1 1 1 ( 1) ; ∀x ∈ [ 0,1] ⇒ x + 1 1 + x x 1 + x2 Daáu ñaúng thöùc trong (1) xaûy ra khi : VT(1) VG(1) x = 0 ⇒ x∈∅ VG(1) VP(1) x = 1 1 1 1 dx 1 π 1 1 1 Do ñoù : ∫ dx < ∫ dx < ∫ 2 ⇒ ln 2 < ∫ dx < 0 1+ x 0 x +1 4 1+ x x 1+ x x 0 0 1 π 1 Chuù yù : ∫ dx = Xem baøi taäp 5 . 0 1 + x2 4 1
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 1 5. 0 1 ⇒ x2 x2 + x ⇒ 2 + 2 x2 x2 + x + 2 ⇒ x ⇒ x2 + x2 x 2 2 x + x+ 2 2( x + 1) 1 11 1 1 1 1 ∫0 x2 + 1 dx ; I = ∫0 1 + x2 dx ⇒∫ dx x + x+2 2 2 0 1 dt = (1 + tg 2 t)dt Ñaët x = tgt ⇒ dx = cos 2 t 0 1 π 1 + tg 2 t 1 π π π x π 1 Vaäy ∫ 2 ⇒I=∫ 4 dt = ∫ 4 dt = ⇒ I = dx 0 1 + tg t 4 4 0 x + x+2 8 2 π 0 0 t 4 0 x5 x 3 6. 0 x 1 ⇒ ⇒ 0 x5 + x 4 2 x 3 ⇒ x3 + 3 x 5 + x4 + x3 + 3 3 x 3 + 3 0 x4 x 3 1 1 1 x x x ⇒ ⇒3 3x + 3 x + x + x3 + 3 x +3 3x + 3 x + x + x3 + 3 x +3 3 5 4 3 5 4 3 x x x 1 1 1 dx ( 1 ) ⇒∫ ∫ ∫ dx dx 0 3x + 3 x + x + x3 + 3 x +3 3 5 4 3 0 0 11 x 0 1 x x 1 ° I1 = ∫ dx ; Ñaë t x = t 2 ;( t 0) ⇒ dx = 2 tdt dx = ∫ 3 0 3 x3 + 3 3 0 x +1 0 1 t 0 1 2 2 1 3 t 2 . dt 1 1 2t π t 1 du Ñaët u = t 3 ⇒ du = 3t 2 dt I1 = ∫ 6 dt = ∫ 3 2 ⇒ I1 = ∫ 2 = 0 1 9 0 u +1 18 3 0 t +1 9 0 (t ) + 1 u π Keát quaû : I = (baøi taäp 5) 4 π x x 1 1 °I2 = ∫ 3 (töông töï) Vaäy (1) ⇔ I1 ∫ 5 = dx I2 0 x + x + x3 + 3 0 x +3 4 93 π π x 1 ∫ dx 18 x + x + x3 + 3 5 4 93 0 π π sin x .cos x 1,Chöùng minh raèng : ∫ 2 dx (1 + sin x ) (1 + cos x ) 4 4 12 0 ) ( π π t tg 4 x 2 tg 3t + 3 tgt 2.Neáu : I ( t ) = ∫ dx > 0 , ∀t ∈ 0 , ; thì : tg t + > e 3 4 4 cos 2 x 0 Baøi giaûi : 3 2 + cos2 x + sin2 x 2 + sin 4 x + cos 4 x 1. Ta coù : = (1 + sin 4 x)(1 + cos4 x) (1 + sin 4 x)(1 + cos 4 x) (1 + sin 4 x)(1 + cos 4 x) 3 1 + sin 4 x + 1 + cos 4 x 1 1 ⇒ = + (1 + sin x)(1 + cos 4 x) (1 + sin x)(1 + cos x) 1 + sin x 1 + cos 4 x 4 4 4 4 2
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 3 sin x. cos x 1 sin 2 x sin 2 x sin x. cos x sin x. cos x sin x. cos x ⇒ + ⇒ 1 + sin 4 x + 1 + cos 4 x (1 + sin 4 x)(1 + cos 4 x) 1 + sin x 4 1 + cos x 4 (1 + sin 4 x)(1 + cos 4 x) 6 3 sin x. cos x 1 π 2 sin 2 x sin 2 x π π ⇒∫ ∫0 1 + sin 4 x dx + ∫ 2 2 dx dx 0 (1 + sin 4 x)(1 + cos 4 x ) 6 0 1 + cos 4 x sin 2 x π °J1 = ∫ 2 Ñaë t t = sin 2 x ⇒ dt = sin 2 xdx dx 0 1 + sin 4 x π 0 x 2 ⇒ J = 1 dt = π (keát quaû I= π baøi taäp 5) ∫0 t 2 + 1 4 1 0 4 1 t sin 2 x π °J2 = ∫ 2 u = cos 2 x ⇒ du = − sin 2 xdx Ñaë t dx 0 1 + cos 4 x π 0 x π π 1 du 2 = (keát quaû I= baøi taäp 5) ⇒ J2 = ∫ 2 0 0 u +1 4 4 u 1 1 sin x. cos x sin x. cos x π π π ( I + J ) Vaäy ∫ 2 ⇒∫ 2 dx dx 0 (1 + sin 4 x)(1 + cos 4 x) 0 (1 + sin 4 x )(1 + cos 4 x) 6 12 dt 2. Ñaët t = tgx ⇒ dt = (1 + tg 2 x) dx ⇒ dx = 1 + t2 tgt tgt t 4 tgt t 4 dt tgt 2 dt 1 13 1 t-1 13 1 tgt - 1 I =∫ t 0 1 - t 2 . 1 + t 2 = ∫0 1 - t 2 = ∫0 -t - 1 + 1 - t 2 dt = - 3 t - t - 2 ln t + 1 0 = - 3 tg t - tgt - 2 ln tgt + 1 2 1+t Vì 1 1 tgt - 1 I > 0 neân : - tg 3 t - tgt - ln >0 (t) 3 2 tgt + 1 3 2 tg t + 3 tgt 1 tgt − 1 1 π 1 π = ln tg t + > tg 3 t + tgt ⇒ tg t + > e 3 ⇔ ln 2 tgt + 1 2 4 3 4 1 1 x2 1 vaø lim In dx = 0 Chöùng minh : 1. I n = ≤ ∫ In dx ≤ 2( n + 1) n+1 x +1 n→+∞ 0 2 1 2. J n = x n ( 1 + e-x ) Chöùng minh : 0 < ∫ J n dx vaø lim J n dx = 0 n +1 n→+∞ 0 Baøi giaûi : xn xn xn 11 1 1 1 1 x n ⇒ ∫ x n dx x n dx 1. 0 x 1 ⇒ 1 x + 1 2 ⇒ 1; ∫0 x + 1dx ∫ 2 x +1 20 2 x +1 0 1 1 x n+1 x n+1 xn xn 1 1 1 1 ∫0 x + 1dx ∫0 x + 1dx ⇒ ⇒ 2 ( n + 1) 2 ( n +1) n +1 0 n +1 0 3
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 n→∞ 2 ( n + 1) = 0 lim xn Ta coù : ⇒ lim =0 n→∞ x + 1 lim 1 = 0 n→∞ n + 1 x n (1 + e − x ) x n (1 + e − x ) e0 = 1 ⇒ 1 1 + e− x e− x 2 ⇒ xn 2. x n hay 0 2 xn 1⇒ 0 2. 0 x 1n (1 + e x ) dx x n (1 + e − x ) dx 2 1 1 ∫ 2∫ x ndx ⇒ 0 ∫ − ⇒0 x n +1 0 0 0 ⇒ lim xn (1 + e− x ) dx = 0 2 Ta coù : lim =0 n→∞ n + 1 n→∞ Chöùng minh raèng : π 2 1. ∫ π cos x(4 − 3 cos x)(2 cos x + 2)dx ≤ 8π 2. ∫ 2 ln x(9 − 3 ln x − 2 ln x)dx ≤ 8(e − 1) -2 1 2π 49π π π 3. ∫π 4. ∫ 3 4 sin x(1 + 2 sin x )(5 − 3 sin x)dx < tgx(7 − 4 tgx)dx ≤ 3 64 0 4 243π π 5. ∫ sin 4 x. cos6 xdx ≤ 6250 0 Baøi giaûi : Ñaët f(x) = cosx(4 - 3 cosx )(2 cosx + 2) 3 cos x + 4 − 3 cos x + 2 cos x + 2 =8 cauchy f(x) 3 π π π 2 2 2 ⇒∫ 8∫ dx ⇒ ∫ cos x(4 − 3 cos x )(2 cos x + 2)dx 8π f(x)dx −π −π −π 2 2 2 2. Ñaët f ( x) = ln x (9 − 3 ln x − 2 ln x) = ln x (3 + ln x )(3 − 2 ln x ) 3 ln x + 3 + ln x + 3 − 2 ln x =8 f ( x) 3 e e e ⇒∫ 8∫ dx ⇒ ∫ ln x (9 − 3 ln x − 2 ln x) dx 8( e −1) f ( x) dx 1 1 1 3 sin x + 1 + 2 sin x + 5 − 3 sin x 8 3. Ñaët f ( x) = sin x (1 + 2 sin x)(5 − 3 sin x ) ; f(x) 3 sin x = 1 + 2 sin x sin x = −1 Ñaúng thöùc ⇔ ⇔ x∈∅ ⇔ sin x = 5 − 3 sin x 4 sin x = 5 2π π π π ⇒ f (x) < 8 ⇒ ∫ f(x)dx < 8∫ ⇒∫ 3 3 3 sin x(1 + 2 sin x )(5 − 3 sin x)dx < dx 3 π π π 4 4 4 1 4. Ñaët f(x) = tgx(7 − 4 tgx) = .4 tgx( 7 − 4 tgx) 4 4
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 2 1 4 tgx + 7 − 4 tgx 49 f ( x) ≤ = 4 2 16 ∏ 49 ∏ 4 ∏ 49 ∏ ( ) ⇒ ∫ 4 f ( x ) dx 16 ∫0 ⇒ ∫ 4 tgx 7 − 4 tgx dx dx 16 0 0 5. sin 4 x.cos 6 x = (1 − cos 2 x).(1 − cos 2 x).cos 2 x . cos 2 x . cos 2 x 1 = (2 − 2 cos 2 x)(1 − cos 2 x).cos 2 x.cos 2 x.cos 2 x 2 5 1 2 − 2 cos 2 x + 1 − cos 2 x + cos 2 x + cos 2 x + cos 2 x ≤ 2 5 243 ∏ 243 ∏ ⇒ ∫ sin 4 x.cos 6 xdx ≤ ⇒ sin 4 x.cos 6 x ≤ 6250 6250 0 Chöùng minh raèng : ) ( 5∏ 2 ∏ ∫ cos 2 x + 3sin 2 x + sin 2 x + 3cos 2 x dx 2 1. −∏ 3 3 ) ( e 4 ( e − 1) 2. ∫ 3 + 2 ln 2 x + 5 − 2 ln 2 x dx 1 ∏ 3 cos x + sin x ∏ ∫ 3. − dx x2 + 4 4 4 Baøi giaûi : 1. Ñaët f ( x ) = 1 cos 2 x + 3sin 2 x + 1. sin 2 x + 3cos 2 x 2 ( cos 2 x + 3sin 2 x + 3cos 2 x + sin 2 x ) ⇒ f ( x ) f 2( x ) 22 ) ( ∏ 5∏ 2 ∏ ∏ ⇒ ∫ ∏2 f ( x ) dx 2 2 ∫ ∏2 dx ⇒ ∫ ∏2 cos 2 x + 3sin 2 x + sin 2 x + 3cos 2 x dx − − − 3 3 3 3 2. Ñaët f ( x ) = 1 3 + 2 ln 2 x + 1 5 − 2 ln 2 x f ( x ) 2 ≤ 2 ( 3 + 2 ln 2 x + 5 − 2 ln 2 x ) ⇒ f ( x ) ≤ 4 ( ) e e e 3 + 2 ln 2 x + 5 − 2 ln 2 x dx ≤ 4 ( e − 1) ⇒ ∫ f ( x ) dx 4 ∫ dx ⇒ ∫ 1 1 1 3. 3 cos x + sin x ≤ ( 3)2 + 1 ( cos 2 x + sin 2 x ) 3 cos x + sin x 3 cos x + sin x 2 2 2 dx ⇒∫ ≤ 2∫ ⇒ ≤ x +4 x2 + 4 x +4 x +4 2 2 2 0 0 5
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Ñaët x = 2tgt ⇒ dx = 2 (1 + tg 2 t ) dt ∏ 2 (1 + tg 2t ) 1∏ ∏ 2 x 0 1 dx ⇒∫ =∫ 4 dt = ∫ 4 dt = 4 (1 + tg t ) ∏ x +4 2 2 2 8 0 0 0 t 0 4 3 cos x + sin x ∏ ∏ 3 cos x + sin x ∏ 2 2 ⇒∫ ∫ ⇒− dx dx x +4 x2 + 4 2 4 4 4 0 0 ÑAÙNH GIAÙ TÍCH PHAÂN DÖÏA VAØO TAÄP GIAÙ TRÒ CUÛA HAØM DÖÔÙI DAÁU TÍCH PHAÂN Chöùng minh raèng : ∏ ∏ ∏ sin x ∏ sin x 4..∫ dx > ∫∏ 1.∫ sin 2 xdx ≤ 2∫ 2 4 4 dx cos xdx x x 0 0 0 2 ∏ ∏ 2 2 5. ∫ (ln x) 2 dx < ∫ ln xdx 2.∫ 2∫ 2 2 sin 2 xdx sin xdx 0 0 1 1 x −1 2x − 1 ∏ ∏ 2 2 3.∫ dx < ∫ 6. ∫ sin xdx < ∫ 4 4 dx cos xdx 1 x +1 x 1 0 0 Baøi giaûi : ∏ 0 ≤ sin x ≤ 1 1.∀x ∈ 0; ⇒ ⇒ 2sin x.cos x ≤ 2 cos x 4 0 ≤ cos x ≤ 1 ∏ ∏ 4 4 ⇒∫ sin 2 xdx ≤ 2 ∫ ⇔ sin 2 x ≤ 2 cos x cos xdx 0 0 6
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ∏ cos x ≤ 1 2. ∀x ∈ 0; ⇒ ⇒ 2 sin 2 x.cos x ≤ 2sin x 2 0 ≤ sin x ∏ ∏ 2 2 ⇔ sin 2 x ≤ 2sin x ⇒ ∫ sin 2 xdx ≤ 2 ∫ sin xdx 0 0 x -1 2 x − 1 −x 2 + x − 1 3. ∀x ∈ [ 1;2 ] Xeùt hieäu : 0 ⇒ < dx ∏−x ∏−x ∏ x x 0 2 sin x ∏ sin x ∏ ⇒∫ dx > ∫∏ dx x x 0 2 5. Haøm soá y = f(x) = lnx lieân tuïc treân [1,2] neân y = g(x) = (lnx)2 cuõng lieân tuïc treân [1,2] 1 x 2 ⇒ 0 ln x ln 2 < 1 (*) ⇒ 0 (ln x )2 < ln x 2 2 ∀x ∈ [ 1,2 ] ⇒ ∫ (ln x )2 dx < ∫ ln xdx 1 1 Chuù yù : daáu ñaúng thöùc (*) xaûy ra taïi x0 = 1⊂ [1,2] sin x ∏ ∏ 6. 0 < x < ⇒ 0 < tgx < tg = 1 ⇔
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Baøi Giaûi: 1. 0 ≤ x ≤ 1 ⇒ 0 ≤ x 2 ≤ 1 ⇒ 4 ≤ x 2 + 4 ≤ 5 ⇒ 2 x2 + 4 ≤ 5 1 1 1 1 ⇒ 2 ∫ dx ≤ ∫ x 2 + 4 dx ≤ 5 ∫ dx ⇒ 2 ≤ ∫ x 2 + 4 dx ≤ 5 0 0 0 0 2. 0 ≤ x ≤ 1 ⇒ 0 ≤ x 8 ≤ 1 ⇒ 1 ≤ x 8 + 1 ≤ 2 1 1 ⇒ 0 ≤ x8 + 1 ≤ 2 ⇒ ≤1 ≤ 2 x8 + 1 1 1 dx dx 1 1 1 1 ≤1 ∫ dx ≤ ∫ ≤ ∫ dx ⇒ ≤∫ ⇒ 2 2 0 0 0 0 x8 + 1 x8 + 1 3. 0 ≤ x ≤ 1 ⇒ 1 x10 + 1 2 ⇒1 3 x10 + 1 2 3 1 1 25 25 x x 1⇔ x 25 ⇒ 2 2 3 3 3 x +1 10 3 x +110 1 25 1 x 25 1 x 1 1 1 1 x 25 dx x 25 dx ⇒ ∫ ∫ ∫ ∫ ⇒ dx dx 26 2 26 2 3 3 0 03 0 03 x +1 10 x +1 10 x sin x x ;(1) ∀x ∈ [ 0,1] . 4. Tröôùc heát ta chöùng minh : 1 + x sin x 1+ x Giaû söû ta coù : (1). 1 1 1 1 ; ∀x [ 0.1] ⇔ (1) ⇔ 1 − 1− 1 + x sin x 1+ x 1 + x sin x 1 + x ⇔ 1 + x 1 + x.sin x ⇔ x (1 − sin x ) 0 ñuùng ∀x ∈ [ 0,1] x sin x 1 1 1 1 x dx = ∫ 1 − ∫ dx ∫ (1) ⇔ dx 1+ x 0 0 x + x sin x 0 1+ x 1 x .sin x 1 dx ( x − ln 1 + x ) = 1 − ln 2 ⇔∫ Vaäy (1) ñaúng thöùc ñuùng , khi ñoù: 0 1 + x sin x 0 x.sin x 1 ⇒∫ dx 1 − ln 2. 0 1 + x .sin x 1 1 0 < e− x = x e− x sin x 1, 3 ⊂ ( 0, ∏ ) ⇒ 1 e⇒0< 2 < 5. x ∈ e e ( x + 1) x +1 2 0 < sin x < 1 3 e − x sin x 1 3 dx 1 3 dx ⇒0
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân (1 + tg t )dt = 2 ∏ ∏ ∏ ∏ x 1 3 ⇒ Ι = ∫∏ ∫∏ 4 dt = t = 3 3 3 ∏ ∏ ∏ 1 + tg t 2 12 t 4 4 4 4 3 e − x sin x ∏ Vaäy 0 < ∫ dx < x +1 2 12e 1 1⇒ 0 x2 ⇒ − x2 − x3 x3 6. 0 x 0 ⇒ 4 − 2x2 4 − x 2 − x3 4 − x2 ⇒ 4 − 2x2 4 − x2 − x3 4 − x2 1 1 1 ⇒ 4 − 2x2 4− x −x 4 − x2 2 3 1 1 1 1 1 1 ⇒I =∫ ∫ ∫ dx = J dx dx 4 − x2 4 − x2 − x3 4 − 2 x2 0 0 0 Ñaët x = 2sin t ⇒ dx = 2 cos tdt ∏ ∏ ∏ x 0 1 2 cos tdt ⇒I =∫ 6 = ∫ 6 dt = ∏ 4 − ( 2sin t ) 6 2 0 0 t 0 6 Ñaët x = 2 sin t ⇒ dx = 2 cos tdt x 0 1 ∏ t 0 4 ∏ ∏ ∏2 4 2 cos tdt 2 ⇒J =∫ = = 4 ( ) 2 8 0 2 4−2 2 sin t 0 ∏ ∏2 dx 1 ≤∫ ⇒ ≤ 6 8 4 − x 2 − x3 0 Chöùng minh raèng : ∏ ∏6 e −1 ∏ 1 1 − x2 ≤ ∫ 2 1 + sin 2 x .dx ≤ ∫0 e dx 1 3. 1. 2 2 4 e 0 ∏ ∏ ∏ 1 1 sin 2 x 4. 0.88 < ∫ ∫0 2 e dx 2 e dx < 1 2. 1 + x4 2 0 Baøi giaûi : 9
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1.°0 x 1 ⇒ 0 x 2 x 1 ⇒ 0 < e x 2 ex 1 1 e− x (1) 2 ⇔ e− x ⇒ x2 x e e 1( 2 ) °x 2 2 2 e0 = 1 ⇒ e− x 0 ⇒ ex Töø (1) vaø (2) suy ra : e − x 2 e− x 1 e −1 1 1 1 1 ⇒ ∫ e − x dx ∫e ∫0 dx ⇒ e ∫e 2 − x2 − x2 1 dx dx 0 0 0 2 1⇒1 sin 2 x esin x 2. 0 e ∏ ∏ ∏ ∏ ∏ ∏ ⇒∫ ∫ e.∫ ∫ 2 2 dx ⇒ 2 2 2 2 esin x dx esin x dx dx e 2 2 0 0 0 0 12 1 1 3 1⇒ 0 ⇒1 1 + sin 2 x sin 2 x 3. 0 sin x 2 2 2 2 ∏ ∏6 ∏ ∏ 3 ∏2 ∏ 1 1 ⇒∫ ∫ ∫0 dx ⇒ 2 ∫ 1 + sin 2 x dx 1 + sin 2 x .dx 2 2 2 dx 2 2 2 4 0 0 0 4. Caùch 1: 1 1 ∀x ∈ ( 0,1) thì x 4 < x 2 ⇒ 1 + x 4 < 1 + x 2 ⇒ > 1+ x 1 + x2 4 ( ) 1 1 1 1 1 ⇒∫ dx > ∫ dx = ln x + 1 + x 2 = ln 1 + 2 > 0,88 0 0 1 + x4 1 + x2 0 1 1 1 Maët khaùc : 1 + x 4 > 1 ⇒ dx > I 1+ x 1+ x 1 + x4 4 2 0 1 1 Vôùi : I = ∫ dx 1 + x2 0 dt = (1 + tg 2t ) dt 1 Ñaët x = tgt ⇒ dx = cos 2 10
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân (1 + tg t ) dt = 2 ∏ ∏ x 0 1 1 I =∫ ∫ 4 4 dt ∏ (1 + tg t ) cos t 0 0 2 t 0 4 ∏ cos t I =∫ 4 dt 1 − sin 2 t 0 ∏ t 0 4 Ñaët u = sin t ⇒ du = cos tdt 1 u 0 2 1− u + u +1 1 1 1 1 1 du 1 1 I =∫ =∫ du = ∫ + 2 2 2 du (1 − u )(1 + u ) 1− u 1+ u 1− u 2 20 20 0 1 1 1+ u 11 11 1 1 2 =∫2 du + ∫ 2 du = ln 1+ u 1− u 2 1− u 2 2 0 0 0 1 2+ 2 1 1 > 0,88 ⇒ ∫ I= dx > 0,88 ln 2 2− 2 0 1 + x4 1 Maët khaùc :1 + x 4 > 1 ⇒
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân Ta coù : α α ∫ ∫ 0 x tgx dx xdx 0 0 ∏ ∏ β β 0 < ∫ x tgx dx < ∫ xdx ⇒ 0 ∫ x tgx dx < ∫ 4 4 xdx α α 0 0 ∏ ∏ 0 ∫ x tgx dx ∫ xdx 4 4 β β ∏ 2 ∏ ⇒ 0 < ∫ 4 x tgx dx < 32 0 α β Chuù yù : (α , β ) ⊂ [ a, b ] thì b b ∫ f ( x ) dx = ∫ f ( x ) dx + ∫ f ( x ) dx + ∫ f( x ) dx α β a b Tuy nhieân neáu : m M thì : f( x ) b b b b M ∫ dx ⇒ m ( b − a ) M (b − a ) m ∫ dx ∫ ∫ f( x ) dx f( x ) dx a a a a Nhöng (α , β ) ⊂ [ a, b ] thì m ∫ dx < ∫ f( x ) dx < M ∫ f( x ) dx b b b a a a (Ñaây laø phaàn maéc phaûi sai laàm phoå bieán nhaát )Do chöa hieåu heát yù nghóa haøm soá f( x ) chöùa (α , β ) lieân tuïc [ a, b ] maø (α , β ) ⊂ [ a, b ] ) 1 cos nx cos nx cos nx 1 1 1 1 1 ∫0 1 + x dx ∫ dx = ∫ ∫0 1 + x = ln 1 + x 0 = ln 2 2. dx 1+ x 0 1+ x 0 cos nx 1 ∫ ⇒ dx ln 2 0 1+ x e − x e −1 = 1 e 3⇒ 3. 1 x sin x 1 1 e− x .sin x e − x .sin x 3 3 3 e dx ∫ ∫ ∫ ⇒ dx dx 1 + x2 1 + x2 1 + x2 1 1 e− x .sin x 1 1 3 3 vôùi I = ∫ ∫ ⇒ dx .I dx 1 + x2 1 + x2 e 1 1 Ñaët x = tgt ⇒ dx = (1 + tg 2t ) dt (1 + tg t )dt = 2 ∏ ∏ ∏ x 1 3 ⇒ Ι = ∫∏ ∫ dt = 3 3 ∏ ∏ 4 1 + tg t ∏ 2 12 t 4 4 3 −x ∏ 3 e .sin x (*) (Caùch 2 xem baøi 4 döôùi ñaây ) ⇒∫ dx 1+ x 12e 1 Ñaúng thöùc xaûy ra khi : 12
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân x = 1 e − x = e −1 ⇒ x ∈ ∅, ∀x ∈ 1, 3 ⇔ sin x = 1 sin x = 1 −x ∏ 3 e .sin x Vaäy : ∫ dx < 1+ x 2 12e 1 Xem laïi chuù yù treân , ñaây laø phaàn sai laàm thöôøng maéc phaûi khoâng ít ngöôøi ñaõ voäi keát luaän ñaúng thöùc (*) ñuùng . Thaät voâ lyù e− x cos x e − x cos x e− x 3 3 3 ∫ ∫ ∫ 4. dx dx dx 1 + x2 1 + x2 1 + x2 1 1 1 Do y = e− x giaûm ⇒ max ( e− x ) = e −1 = 1 e e− x cos x ∏ 1 1 3 3 ;do I baøi 3 ∫ ∫1 1 + x 2 dx = 12e ⇒ dx 1 + x2 e 1 Daáu ñaúng thöùc : x = 1 e− x = e −1 ⇔ x ∈ ∅, ∀x ∈ 1, 3 ⇔ cos x = 1 cos x = 1 e − x cos x ∏ 3 Vaäy ∫ dx < 1+ x 2 12e 1 u = 1 du = − 1 x 2 dx 5. Ñaët x ⇒ dv = cos xdx v = sin x 200 ∏ 200 ∏ cos x 1 200 ∏ sin x ⇒∫ +∫ dx = sin x dx x2 100 ∏ 100 ∏ x x 100 ∏ 200 ∏ cos x 200 ∏ 1 1 1 200 ∏ ⇒∫ dx ∫ dx = − = x 100 ∏ 200 ∏ 2 100 ∏ 100 ∏ x x 200 ∏ cos x 1 Vaäy ∫ dx 200 ∏ x 100 ∏ Baøi toaùn naøy coù theå giaûi theo phöong phaùp ñaïo haøm . 13
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ex 1 e 1⇒1 e⇒ ex 6. 0 x (1 + x ) (1 + x ) (1 + x ) n n n ex 1 1 1 1 1 ⇒∫ ∫ (1 + x ) e∫ dx dx dx (1 + x ) (1 + x ) n n n 0 0 0 1− n 1 1− n 1 ( x + 1) ( x + 1) ex 1 ∫ (1 + x ) ⇔ dx e. 1− n 1− n n 0 0 0 1 1 x e 1 e 1 Vaäy : ∫ (1 + x ) 1 − n −1 1 − n −1 ; n > 1 dx n −1 2 n −1 2 n 0 Baøi toaùn naøy coù theå giaûi theo phöông phaùp nhò thöùc Newton . Chöùng minh raèng : neáu f(x) vaø g(x) laø 2 haøm soá lieân tuïc vaø x xaùc ñònh treân [a,b] , thì ta coù : ) (∫ 2 b b b ∫ f 2( x ) dx . ∫ g 2( x ) dx f ( x ) .g( x ) .dx a a a Caùch 1 : ( ) Cho caùc soá α1 , tuyø yù i ∈ 1, n ta coù : (α + α 2 2 + ... + α 2 n ) ( β 21 + β 2 2 + ... + β 2 n ) (α1β1 + α 2 β 2 + ... + α n β n ) (1) 2 1 α α1 α 2 Ñaúng thöùc (1) xaûy ra khi : = = ... n β1 β 2 βn Thaät vaäy : phaân hoaïch [a,b] thaønh n ñoaïn nhoû baèng nhau bôûi caùc ñieåm chia : a = x0 < x1 < x2 < ….
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ) (∫ 2 b b b Töø (5) ⇒ ∫ f 2 ( x)dx . ∫ g 2 ( x)dx f ( x).g ( x)dx a a a Caùch 2 : ∀t ∈ R + ta coù : 0 [tf ( x) − g ( x) ] = t 2 f 2 ( x) − 2.t. f ( x).g ( x) + g 2 ( x) 2 b b b ⇒ h(t ) = t 2 ∫ f 2 ( x)dx − 2t ∫ f ( x).g ( x)dx + ∫ g 2 ( x)dx 0 a a a h(t) laø 1 tam thöùc baäc 2 luoân khoâng aâm neân caàn phaûi coù ñieàu kieän : ah = t > 0 2 ⇔ ∆ 'h 0 ∆ h 0 2 ⇔ ∫ f ( x).g ( x)dx − ∫ f 2 ( x)dx . ∫ g 2 ( x)dx ≤ 0 b b b a a a ) (∫ 2 b b b ∫ f 2 ( x)dx . ∫ g 2 ( x)dx ⇒ f ( x).g ( x)dx a a a Chöùng minh raèng : 1 (e − 1) e x − x 5 3. e x − 1 < ∫ e2 t + e− t dt < 1 x 1. ∫ 1 + x3 dx < 2 0 2 0 3∏ 3cos x − 4sin x 5∏ 1 1 2. ∫ esin 2 dx > ∫ x 4. dx 1 + x2 2 0 4 0 Baøi giaûi : ) (∫ 2 b b b 1. Ta coù : f 2 ( x)dx . ∫ g 2 ( x)dx ( ñaõ chöùng minh baøi tröôùc ) ∫ f ( x).g ( x)dx a a a b b b ∫ ∫ ∫ ⇒ f 2 ( x)dx . g 2 ( x)dx f ( x).g ( x)dx a a a (1 + x ) . (1 − x + x 2 ) = (1 + x ) . (1 − x + x ) 1 + x3 = 2 (1 − x + x ) dx < ∫ (1 + x ) dx ∫ ( x − x + 1) dx 1 1 1 1 (1 + x ) ⇒ ∫ 1 + x3 dx = ∫ 2 2 0 0 0 0 1 1 x3 x 2 x2 5 1 ∫ 1 + x3 dx < + x + x = − 3 2 2 0 0 2 0 5 1 ⇒ ∫ 1 + x3 dx < 2 0 ∏ ∏ ∏ 2. ∫ esin dx = ∫ dx + ∫ 2 2 2 2 x esin x esin x 2 dx 0 0 0 ∏ ∏ x x 2 Ñaët t = + t ⇒ dx = dt ∏ 2 t 0 2 15
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân ( ) dt sin 2 ∏ + t ∏ ∏ ∏ ⇒ ∫ esin dx = ∫ 2 esin x dx + ∫ 2 2 x 2 2 e 0 0 0 ∏ ∏ ∏ =∫ dx + ∫ ecos x dx = 2∫ 2 2 2 2 2 2 esin x esin x dx 0 0 0 2 2 ∏ ∏ sin 2 x cos 2 x Ta laïi coù ∫ edx = ∫ 2 e 2 .e 2 2 dx 0 0 ∏ ∏ 2 2 =∏ e ; e > e 2 2 0 0 3 ∏ ⇒ ∫ esin x dx > 2 2 0 Chuù yù : baøi naøy coù theå giaûi theo phöông phaùp ñaïo haøm . x x t 3. ∫ e 2t + e − t dt = ∫ e et + e−2t dt 2 0 0 ) (∫ 2 ∫ e dt ∫ ( e + e −2t )dt x t t t et + e−2t dt t t 2 e 0 0 0 vi ( ∫ f ( x).g ( x)dx ) 2 b b b ∫ f 2 ( x)dx . ∫ g 2 ( x)dx a a a ⇒ ( ∫ e + e dt ) x 1 2 (e − 1) e x − − 2 x < ( e − 1) e − 11 x −t 2t x x 2 2e o 1 (e − 1) e x − (1) 1 ⇒∫ e 2t + e − t dt x 2 0 Maët khaùc : e 2t + e − t > et ; ∀0 < t < x x x ⇒∫ e2t + e− t dt > ∫ et dt = e x − 1 (2) 0 0 1 (e − 1) e x − x Töø (1) vaø (2) suy ra : e x − 1 < ∫ e 2t + e − t dt < x 2 0 3cos x − 4sin x 1 32 + ( −4 )2 sin 2 x + cos 2 x = 5 4. x2 + 1 1 + x2 1 + x2 3cos x − 4sin x 3cos x − 4sin x 1 1 1 1 ∫ ∫ 5∫ ⇒ dx dx dx 1 + x2 1 + x2 1 + x2 0 0 0 Ñaët x = tgt ⇒ dx = (1 + tg 2t ) dt 16
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 (1 + tg t ) 2 ∏ x 0 1 1 1 1 ⇒∫ dx = ∫ dt = ∫ dt = ∏ 0 1+ x 0 1 + tg t 2 2 4 0 t 0 4 1 3cos x − 4sin x 5∏ ⇒ 4. ∫ dx 1+ x 2 4 0 Chöùng minh baát ñaúng thöùc tích phaân baèng phöông phaùp ñaïo haøm. Chöùng minh raèng : ∫( )( ) ∏ ∏2 ∏ 11 ∫ ( sin x + cos x )dx x+7 + 11 − x dx 4 1. 54 2 108 −7 4 4 0 2. 0 < ∫ x (1 − x 2 )dx < 4 3∏ 1 e 4. ∫ esin x dx > 2 27 0 2 0 Baøi giaûi : ( )( ) 11 − x ; x ∈ [ −7,11] 1. Xeùt f ( x ) = x+7 + 11 − x − x + 7 f '( x) = ⇒ f '( x) = 0 ⇔ x = 2 2 11 − x x + 7 x -7 2 11 f’(x) + 0 - f(x) 6 րց 32 32 11 11 11 f ( x) f ( x ) dx 6 ⇒ 3 2 ∫ dx ∫ 6 ∫ dx ⇒3 2 −7 −7 −7 ∫( ) 11 ⇒ 54 2 x + 7 + 11 − x dx 108 −7 2. Xeùt haøm soá : f(x) = x(1-x2) ; ∀x ∈ [ 0,1] ⇒ f ' ( x) = 3x 2 - 4 x + 1 1 ⇒ f’(x)=0 ⇔ x = ∨ x =1 3 x -∞ 0 1 +∞ 1 3 f’(x) + 0 - f(x) 4 27 րց 0 0 17
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 4 ⇒0 f ( x) 27 ( )( ) ∃x ∈ 0, 1 ; 1 , 0 ⇒ 0 < f < 4 3 3 27 ( x) va f (0) = f (1) = 0 41 4 1 1 ⇒ 0 < ∫ f ( x)dx < ∫0 dx ⇒ 0 < ∫0 f ( x)dx < 27 27 0 3. Xeùt haøm soá : ∏ ∏ f ( x) = sin x + cos x = 2 sin x + ; x ∈ 0, 4 4 ∏ ∏ f ' ( x) = 2 cos x + 0 , ∀x ∈ 0, 4 4 ∏ ⇒ f(x) laø haøm soá taêng ∀x ∈ 0, ⇒ f ( 0) f( x ) f ∏ ( 4) 4 ∏ ∏2 ∏ ∫0 ( sin x + cos x )dx 4 ⇒ 1 sin x + cos x 2⇒ 4 4 4. Nhaän xeùt ∀x > 0 thì e x > 1 + x ( ñaây laø baøi taäp Sgk phaàn chöùng minh baát ñaúng thöùc baèng pp ñaïo haøm) Xeùt f (t ) = et − 1 − t ; t 0 ⇒ f '(t ) = et − 1 > 0 ; ∀t > 0 ⇒ haøm soá f(t) ñoàng bieán ∀t 0 Vì x > 0 neân f(x) > f(0) = 0 ⇒ e x − 1 − x > 0 ⇔ e x > 1 + x (1) Do vaäy : ∀x ∈ ( 0, ∏ ) thi esin ( do(1) ) 2 > 1 + sin 2 x x 1 − cos 2 x ⇒ ∫ esin x dx > ∫ (1 + sin 2 x )dx = ∏ + ∫ ∏ ∏ ∏ 2 dx 2 0 0 0 3∏ ∏ ⇒ ∫ esin x dx > 2 2 0 Chöùng minh raèng : ∏ 2 x 1 3 3 cot gx 1 2 ∫1 x2 + 1dx 2 ∫∏ 6 x dx 3 1. 4. 5 12 ∏ 3 3 sin x 1 2 1 1 1 5. < ∫ ∫∏ 4 x dx 2 dx < 2. 3 0 2 + x − x2 4 2 ( ) ∏3 2∏ 3 1 1 ∏ 6. 2 4 2 < ∫ 1 + x + 4 1 − x dx < 4 ∫ 4 3. dx −1 cos x + cos x + 1 3 3 2 0 Baøi giaûi : 18
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 − x2 x 0 ; ∀x ∈ [1, 2] ; x ∈ [1, 2] . coù f '( x ) = 1. Xeùt : f ( x ) = (1 + x 2 ) x +1 2 2 ⇒ haøm soá nghòch bieán ∀x ∈ [1, 2] ⇒ f( 2) f( x ) f (1) 2 22 x 1 x 12 2 ⇒ ∫ dx ∫ 2 ∫1 ⇒ dx dx 5 x +1 2 51 x +1 2 2 1 2 x 1 2 ∫1 x 2 + 1 2 ⇒ 5 ∏ ∏ x.cos x − sin x sin x 2. Xeùt f ( x ) = ; ∀x ∈ ; ⇒ f '( x ) = x2 6 3 x ∏ ∏ Ñaët Z = x.cos x − sin x ⇒ Z ' = − x x < 0 ; ∀x ∈ ; 6 3 ∏ ∏ ⇒ Z ñoàng bieán treân ∀x ∈ ; vaø : 6 3 ∏ −3 3 ∏ ∏ Z Z∏ = < 0 ; ∀x ∈ ; ( 3) 6 3 6 ∏ ∏ ⇒ f '( x ) < 0 ; ∀x ∈ ; 6 3 x -∞ +∞ ∏ ∏ 6 3 f’(x) − ∏ f(x) 3 ց 33 2∏ 33 3 ⇒ f( X ) 2∏ ∏ 33 sin x 3 hay : 2∏ ∏ x 3 ∏3 3 3 ∏3 ∏ ∏ sin x 3 sin x 1 2 ∏ ∫∏ 6 ∫ ∫∏ 6 dx ⇒ 4 ∫ ⇒ 3 3 dx dx dx ∏ ∏ ∏ x x 2 6 6 3. Ñaët t = cos x ; x ∈ [ 0, ∏ ] ⇒ t ∈ [ −1,1] vaø f (t ) = t 2 + t + 1; t ∈ [ −1,1] 19
- Ts. Nguyeãn Phuù Khaùnh - ðà L t Chuyeân Ñeà Baát Ñaúng Thöùc Tích Phaân 1 f '(t ) = 2t + 1; f '( t ) = 0 ⇔ t = − 2 t - ∞ -1 1 +∞ −1 2 f’(t) 0 + − f(t) 1 3 ց ր 3 4 3 3 ; ∀t ∈ [ −1,1] ⇒ f(t ) 4 3 cos 2 x + cos x + 1 3 ; ∀x ∈ [ 0, ∏ ] ⇒ 4 1 3 1 2 cos 2 x + cos x + 1 ⇒ hay 3 3 cos 2 x + cos x + 1 2 3 1∏ 1 2∏ ∏ ∫ dx ∫ ∫ dx ⇒ dx cos x + cos x + 1 2 30 0 30 ∏3 2∏ 3 1 ∏ ∫ ⇒ dx cos x + cos x + 1 3 3 2 0 Chuù yù : thöïc chaát baát ñaúng thöùc treân phaûi laø : ∏3 2∏ 3 1 ∏ (hoïc sinh töï giaûi thích vì sao)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt công thức Toán cấp 3 - THPT Ngô Thời Nhiệm
23 p | 2182 | 565
-
tích phân phổ thông trung học phần 1
15 p | 415 | 175
-
Bài giảng 12: Phép tính tích phân và ứng dụng
26 p | 582 | 173
-
Tích phân-luyện thi đại học 1999-2009
12 p | 228 | 96
-
SGK Giải tích 12 Nâng cao: Phần 2
99 p | 193 | 77
-
Đề thi thử đại học môn Toán năm 2012 - 2013 - THPT Nguyễn Huệ
6 p | 211 | 57
-
Các bài giảng luyện thi tốt nghiệp - Phương pháp giải toán trọng tâm
368 p | 169 | 53
-
Bài giảng Toán 1 chương 3 bài 12: Bài toán có lời văn
18 p | 232 | 31
-
Phân tích sức mạnh của tình yêu thương con người thể hiện qua “Vợ nhặt” của Kim Lân và “Vợ chồng A Phủ” của Tô Hoài
5 p | 133 | 6
-
Cẩm nang tổng hợp công thức Toán cấp 3 - Nguyễn Tiến Đạt
15 p | 49 | 6
-
Lý thuyết và bài tập Giải tích 12 - Chương 4: Số phức
45 p | 32 | 4
-
Các bài kiểm tra 1 tiết Toán 12 phần giải tích
37 p | 64 | 3
-
Phân tích phần mở đầu bản “Tuyên ngôn Độc lập” để làm nổi bật giá trị nội dung tư tưởng và nghệ thuật lập luận của Chủ tịch Hồ Chí Minh
5 p | 90 | 3
-
SKKN: Rèn luyện cho học sinh sử dụng công thức tỷ số thể tích để giải một số bài toán hình học không gian lớp 12
23 p | 57 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn