intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1 năm 2014 - THPT Lý Thái Tổ

Chia sẻ: Nguyen Tien Xuan | Ngày: | Loại File: PDF | Số trang:4

66
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

"Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1 năm 2014 - THPT Lý Thái Tổ" đưa ra lời giải chi tiết các câu hỏi có trong "Đề thi thử Đại học lần 2 môn Toán khối A, A1 năm 2014 - THPT Lý Thái Tổ", nhằm giúp các bạn dễ dàng ôn luyện và kiểm tra kết quả.

Chủ đề:
Lưu

Nội dung Text: Đáp án Đề thi thử Đại học lần 2 môn Toán khối A, A1 năm 2014 - THPT Lý Thái Tổ

  1. www.VNMATH.com SỞ GD & ĐT BẮC NINH ĐÁP ÁN – THANG ĐIỂM TRƯỜNG THPT LÝ THÁI TỔ ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 Môn: TOÁN; Khối A, A1 (Đáp án – thang điểm gồm 04 trang) Câu Đáp án Điểm 1 a. (1.0 điểm) Khảo sát… (2.0 điểm) • Tập xác định: D = ℝ \ {1} . • Sự biến thiên: lim y = 2 , lim y = 2 ⇒ y = 2 là đường TCN của đồ thị hàm số. 0.25 x →−∞ x →+∞ lim y = −∞ , lim− y = +∞ ⇒ x = 1 là đường TCĐ của đồ thị hàm số. x →1+ x →1 2 y' = > 0 ∀x ∈ D (x − 1)2 0.25 ⇒ Hàm số đồng biến trên các khoảng (−∞;1) và (1; +∞). Bảng biến thiên: x −∞ 1 +∞ y' + + 0.25 y +∞ 2 2 −∞ • Đồ thị: x 0 2 y 4 0 - Nhận xét: Đồ thị hàm số nhận điểm I(1; 2) làm tâm đối xứng. 0.25 b. (1.0 điểm) Viết phương trình đường thẳng… Hoành độ giao điểm của d và (C) là nghiệm của phương trình: 2x − 4 x ≠ 1 = 2x + m ⇔  2 x −1 2x + (m − 4)x − m + 4 = 0 (1) d cắt (C) tại hai điểm phân biệt ⇔ (1) có hai nghiệm phân biệt khác 1 0.25 2 + (m − 4) − m + 4 ≠ 0  m < −4 ⇔ ⇔  (*) ∆ = m − 16 > 0 2  m > 4 Khi đó, giả sử A(x A ;2x A + m), B(x B ;2x B + m) với x A , x B là nghiệm của (1) 4−m 4−m 0.25 Áp dụng định lý Vi-ét ta có: x A + x B = và x A x B = 2 2 m Ta có: 4SIAB = 15 ⇔ 2d(I, AB).AB = 15 ⇔ 2 ⋅ ⋅ AB = 15 ⇔ 4AB2 .m 2 = 1125 5 0.25 ⇔ 20(x A − x B ) .m = 1125 ⇔ 4[(x A + x B ) − 4x A x B ]m 2 = 225 2 2 2 ⇔ (m 2 − 16)m 2 = 225 ⇔ m 2 = 25 ∨ m 2 = −9 (loaïi) ⇔ m = ±5 tm(*) 0.25 Vậy giá trị m thỏa mãn đề bài là: m = ±5. Trang 1/4
  2. www.VNMATH.com 2 Giải phương trình … (1.0 điểm) Điều kiện: sin x ≠ 0 cos2 x Khi đó phương trình ⇔ 3 cos x − 2 = 3(cos x − 1) sin 2 x 0.25 cos2 x ⇔ 3cos x − 2 = 3(cos x − 1) ⋅ 1 − cos2 x cos2 x ⇔ 3cos x − 2 = 3(cos x − 1) ⋅ (1 − cos x)(1 + cos x) 0.25 −3cos2 x ⇔ 3cos x − 2 = 1 + cos x ⇔ (3cos x − 2)(1 + cos x) = −3cos2 x ⇔ 6 cos2 x + cos x − 2 = 0 cos x = 1 / 2  x = ±π / 3 + k2π ⇔ (tmđk) ⇔  cos x = −2 / 3  x = ± arccos ( −2 / 3 ) + k2π 0.25 Vậy nghiệm của phương trình đã cho là: x = ±π / 3 + k2 π;x = ± arccos ( −2 / 3) + 2kπ . 3 Giải hệ phương trình … (1.0 điểm) Điều kiện: x ≥ 1/ 2. PT ⇔ 8x 2x − 1 = 4y3 + 12y 2 + 13y + 5 + 3 2x − 1 0.25 ⇔ [4(2x − 1) + 1] 2x − 1 = 4(y + 1)3 + (y + 1) ⇒ y + 1 ≥ 0 Đặt 2x − 1 = u (u ≥ 0) thì pt trở thành: 4u3 + u = 4(y + 1)3 + (y + 1) (*) Xét hàm số: f(t) = 4t 3 + t với t ≥ 0 Ta có: f '(t) = 12t 2 + 1 > 0 ∀t ≥ 0 ⇒ hàm số f(t) đồng biến trên (0; +∞) 0.25 Do đó (*) ⇔ f(u) = f(y + 1) ⇔ u = y + 1 ⇒ 2x − 1 = y + 1 ⇔ 2x = y 2 + 2y + 2 Thế vào (2) ta được: (y 2 + 2y + 2)2 − 4(y 2 + 2y + 2) + 4(y + 1) + 2y 3 + 7y 2 + 2y = 0 ⇔ y 4 + 6y 3 + 11y 2 + 6y = 0 ⇔ y(y3 + 6y 2 + 11y + 6) = 0 0.25 ⇔ y(y + 1)(y + 5y + 6) = 0 2 y = 0 ⇒ x = 1 (tmñk)  y = −1 ⇒ x = 1/ 2 (tmñk) ⇔ 0.25  y = −2 (loaïi)   y = −3 (loaïi) 4 Tìm số hạng chứa … (1.0 điểm) Điều kiện: n ∈ ℕ, n ≥ 3 n! (n − 1)! (n − 1)! (n + 3)! Cnn −3 − C2n −1 = C1n −1Cnn ++32 ⇔ − = ⋅ 3!(n − 3)! (n − 3)!2! (n − 2)!1! (n + 2)!1! ⇔ n(n − 1)(n − 2) − 3(n − 1)(n − 2) = 6(n − 1)(n + 3) 0.25  n = −1 (loaïi) ⇔ n(n − 2) − 3(n − 2) = 6(n + 3) ⇔ n 2 − 11n − 12 = 0 ⇔   n = 12 (thoûa maõn) 12 k  4 12 12 − k  4 12 Khi đó: P = x  x 4 −  = x 3 ∑ C12  3 x k =0 k x4 ( )  −  x  = ∑ k =0 C12 k (−4)k x 51− 5k 0.25 Số hạng tổng quát trong khai triển là: C12 (−4) x k k 51− 5k 0.25 Số hạng chứa x11 ứng với 51 − 5k = 11 ⇔ k = 8 Vậy hệ số của số hạng chứa x11 trong khai triển là: C12 8 (−4)8 = 32440320. 0.25 Trang 2/4
  3. www.VNMATH.com 5 Tính thể tích khối chóp … (1.0 điểm) S Ta có: AC = AD2 + DC2 = 3a - Gọi H = AC ∩ BM ⇒ H là trọng tâm của tam giác ABD. 2 1 ⇒ AH = AO = AC = a 3 3 0.25 - Do (SAC) và (SBM) cùng vuông A 60 o M D góc đáy ⇒ SH ⊥ (ABCD) ⇒ SH là H đường cao của hình chóp S.OMC O - Do SH ⊥ (ABCD) nên góc giữa SA B C và (ABCD) là góc SAO = 60 o 1 1 3a2 2 Có SH = AH tan 60o = a 3, S∆OMC = d(C,OM).OM = DM.OM = ⋅ 2 2 8 0.25 1 1 3a2 2 a3 6 Vậy VS.OMC = ⋅ SH.S∆OMC = ⋅ a 3 ⋅ = ⋅ 3 3 8 8 2 2 ▪ Do H là trọng tâm tam giác ABD ⇒ BH = BM = AB2 + AM 2 = a 2. 3 3 0.25 ∆AHB có AB = 3a = a + 2a = AH + HB ⇒ ∆AHB vuông tại H 2 2 2 2 2 2 Suy ra AH ⊥ HB . Mà SH ⊥ (ABCD) nên SH ⊥ HB 0.25 Do đó HB ⊥ (SAH) hay BM ⊥ (SAC) (đpcm) 6 Tìm giá trị nhỏ nhất của biểu thức P … (1.0 điểm) 1 1 2 Ta có: + ≥ ⇔ (2 + x + y)(1 + xy ) ≥ 2(1 + x + y + xy) x + 1 y + 1 1 + xy ⇔ 2 xy + (x + y) xy ≥ x + y + 2xy ⇔ (x + y)( xy − 1) − 2 xy( xy − 1) 0.25 ⇔ ( xy − 1)( x − y)2 ≥ 0 luôn đúng do xy ≥ 1 z3 + 2 1 Và z 3 + 2 = z3 + 1 + 1 ≥ 3 3 z3 .1.1 = 3z ≥ 3 ⇒ ≥ 3(xy + 1) xy + 1 x y 1  1 1  1 Khi đó: P ≥ +1+ +1+ − 2 = (x + y + 1)  + + −2 y +1 x +1 xy + 1  x + 1 y + 1  xy + 1 0.25 ( ≥ 2 xy + 1 ⋅ ) 2 + 1 1 + xy xy + 1 −2 (2t + 1)2 1 2t 1 Đặt xy = t(t ≥ 1) . Ta có: P ≥ + 2 −2= + 2 = g(t) t +1 t +1 t +1 t +1 2 2t 2(t − 1) 2 (t 2 + t + 1) 0.25 Ta có: g '(t) = − = ≥ 0 với ∀t ≥ 1 (t + 1) 2 (t 2 + 1)2 (t + 1) 2 (t 2 + 1)2 ⇒ Hàm số g(t) đồng biến trên [1; +∞) ⇒ g(t) ≥ g(1) = 3 / 2 ⋅ Vậy giá trị nhỏ nhất của P là 3 / 2. 0.25 Dấu “=” xảy ra khi x = y = z = 1. 7 Lập phương trình đường thẳng đi qua M … (1.0 điểm)  11a − 7    11a − 23  Do A ∈ ∆1 ⇒ A  ;a  ⇒ MA =  ;a + 14  0.25  2   2   −3b − 4    −3b − 20  B ∈ ∆2 ⇒ B ; b  ⇒ MB =  ; b + 14  0.25  2   2       Theo giả thiết ta có: 3MB + 2AM = 0 ⇔ 3MB = 2MA Trang 3/4
  4. www.VNMATH.com  −9b − 60  = 11a − 23 22a + 9b = −14 a = 1 ⇒ A(2;1) ⇔ 2 ⇔ ⇔ 0.25 3b + 42 = 2a + 28 2a − 3b = 14  b = −4 ⇒ B(4; −4)    Ta có: AB = (2; −5) là 1 VTCP của AB ⇒ n = (5;2) là 1 VTPT của AB. 0.25 Vậy phương trình đường thẳng AB là: 5x + 2y − 12 = 0. 8 Lập phương trình đường thẳng ∆ … (1.0 điểm) (C1 ) có tâm I1 (1; 0) và b/k R1 = 1/ 2 , (C2 ) có tâm I 2 (2;2) và b/k R 2 = 2 Giả sử đường thẳng ∆ có phương trình dạng: ax + by + c = 0 (a2 + b2 ≠ 0) 0.25 a+c 1 ∆ tiếp xúc (C1 ) ⇔ d(I1 , ∆ ) = R1 ⇔ = (1) a2 + b 2 2 Gọi H là trung điểm AB. 2  AB  2a + 2b + c 0.25 ⇒ d(I 2 , ∆) = I 2 H = R −  2 2  = 4−2 = 2 ⇔ = 2 (2)  2  a +b 2 2  c = 2b Từ (1) và (2) ta có: 2 a + c = 2a + 2b + c ⇔   c = −(4a + 2b) / 3 a = − b ▪ Với c = 2b ⇒ (1) ⇔ a2 + b2 = 2 a + 2b ⇔  a = −7b 0.25 a = 1,c = −2 Do a2 + b2 ≠ 0 ⇒ b ≠ 0 . Chọn b = −1 ⇒  a = 7,c = −2 ⇒ phương trình đường thẳng ∆ là: x − y − 2 = 0, 7x − y − 2 = 0. 4a + 2b a + 2b b = a ▪ Với c = − ⇒ (1) ⇔ a2 + b2 = 2 ⇔ 3 3  b = 7a  b = 1,c = −2 0.25 Do a2 + b2 ≠ 0 ⇒ a ≠ 0 . Chọn a = 1 ⇒   b = 7,c = −6 ⇒ phương trình đường thẳng ∆ là: x + y − 2 = 0, x + 7y − 6 = 0. 9 Tim m để phương trình có nghiệm … (1.0 điểm) Điều kiện: (x − 3)(x + 3) ≥ 0 ⇔ x ≤ −3 ∨ x ≥ 3. Nhận thấy x = 3 không là nghiệm của phương trình ⇒ x ≠ 3 Khi đó phương trình: 0.25 x +3 x +3 x +3 x+3 ⇔ 2⋅ + 2 − 2m = (m − 1) ⇔ 2⋅ + 2 − 2m = (m − 1) (do ĐK) x −3 x −3 x −3 x −3 x+3 Đặt = t (t ≥ 0, t ≠ 1) . Khi đó, phương trình trở thành: x−3 0.25 2t 2 + t + 2 2t + 2 − 2m = (m − 1)t ⇔ 2t + t + 2 = (t + 2)m ⇔ m = 2 2 (*) t+2 2t 2 + t + 2 Xét hàm số: f(t) = với t ∈ [0; +∞) ; lim f (t) = +∞ t+2 t →+∞ 0.25 2t 2 + 8t Ta có: f '(t) = ≥ 0 ∀t ∈ [0; +∞) ⇒ Hàm số đồng biến trên [0; +∞) (t + 2)2 Do đó phương trình đã cho có nghiệm ⇔ (*) có nghiệm thỏa mãn: t ≥ 0, t ≠ 1 m ≥ f(0) m ≥ 1 0.25 ⇔ ⇔ m ≠ f(1) m ≠ 5 / 3 ▪ Chú ý: Các cách giải đúng khác đáp án cho điểm tối đa. Trang 4/4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2