intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

A study on the estimation of sea-waves influence on the working depth of towed underwater vehicle

Chia sẻ: Thi Thi | Ngày: | Loại File: PDF | Số trang:10

19
lượt xem
1
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

The article presents the problem associated with the influence of seawaves on the working depth of a towed underwater vehicle (TUV) including: defining transfer function (TF) of the towing cable - underwater vehicle system; analyzing the sea-wave’s features, modeling and defining the TF of filter which forms the sea-waves; estimating the TFs of the system (TC - UV) and researching the influence of sea-waves to the TUV’s working depth in the time domain.

Chủ đề:
Lưu

Nội dung Text: A study on the estimation of sea-waves influence on the working depth of towed underwater vehicle

Nghiên cứu khoa học công nghệ<br /> <br /> A STUDY ON THE ESTIMATION OF SEA-WAVES INFLUENCE ON<br /> THE WORKING DEPTH OF TOWED UNDERWATER VEHICLE<br /> Nguyen Phu Dang1*, Pham Tuan Thanh1, Tran Xuan Tinh1, Dao Sy Luat2<br /> Abstract: The article presents the problem associated with the influence of sea-<br /> waves on the working depth of a towed underwater vehicle (TUV) including:<br /> defining transfer function (TF) of the towing cable - underwater vehicle system;<br /> analyzing the sea-wave’s features, modeling and defining the TF of filter which<br /> forms the sea-waves; estimating the TFs of the system (TC - UV) and researching<br /> the influence of sea-waves to the TUV’s working depth in the time domain.<br /> Simulating and evaluating the influence of sea-waves on the TUV’s vertical<br /> oscillation for a specific system will be considered at the end of the article. The<br /> received results can be used for designing and manufacturing TUVs, building a<br /> regulator to stabilize the TUV’s working depth against sea-waves and damper, as<br /> well as designing other specialized underwater devices.<br /> Keywords: Towed underwater vehicle, Transfer function, Sea-waves model, Objects with distributed<br /> parameters, Estimation of transfer function, Sea-wave’s spectral density.<br /> <br /> 1. INTRODUCTION<br /> Recently, Towed Underwater Vehicles (TUV) have been powerfully developed due to<br /> their good capabilities of exploring the ocean environment. In comparison to Autonomous<br /> Underwater Vehicles (AUV), TUVs are able to work much longer and much deeper under<br /> the water, to communicate much easier and more exacte to the ship, and to survey the<br /> ocean floor more quickly.<br /> Basically, to operate a TUV, it is necessary to have a 3-part system including ship,<br /> towed cable (TC), and underwater vehicle (UV) as the illustration in Fig. 1. The towed<br /> cable is an essential device for both mechanical and electrical connections. Moreover, it is<br /> “very important to many marine meassurement and salvage operations” [1].<br /> <br /> <br /> <br /> <br /> Figure 1: The 3-part system of ship, towed Figure 2: The main tasks of this research.<br /> cable, and UV.<br /> However, working with a towed cable, also called umbilical cable, in the ocean<br /> environment with the presence of sea waves is not easy for an UV. The sea waves<br /> regularly make the cable elastic. The elastic causes the UV to operate unsteadily. There<br /> have been many researches dealing with the influence of sea waves on the components of<br /> the 3-part system such as [2] evaluated sea-waves noise effect on the ship, [3] analysed the<br /> influence of water waves on an AUV, [4] proposed an algorithm to analyse the<br /> viscoelastic effect of sea water on the cable.<br /> <br /> <br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 77<br /> Kỹ thuật điều khiển & Điện tử<br /> <br /> In earlier works, many researchers achieved positive results in estimating the effect of<br /> sea waves on the towed cable [1, 5]. E.g. [5] developed a numerical model of the towed<br /> cable system by using series of differential equations to analyse discrete elastic elements<br /> along the cable. In a similar way, [1] performed modeling towed cable systems dynamics<br /> by dividing the cable system into discrete elements and formulating the equations of<br /> motion for the elements. The drawback of [5] and [1] is the use of a large number of<br /> differential computations.<br /> In our research, the simple calculations for estimating sea-waves influence on the<br /> towed underwater vehicle are proposed. The simple calculations are taken from the<br /> approximations of the complex mathematical equations for modeling the sea waves and<br /> modeling the TC-UV system. The main works of the research are illustrated on Fig. 2.<br /> 2. CONTENT OF THE STUDY<br /> 2.1. Modeling the TC-UV system<br /> Acording to [6], the TC – UV system contains distributed parameters. It can be<br /> described by the partial derivative differential equations or the integral equations, the<br /> integral-differential equations and many others,... which are more complex than the<br /> equations of objects with concentrated parameters. As a result, the TFs contain not only<br /> the high order rational fractions but also the inertial and transcendental expressions [6].<br /> To model the structure of the TC - UV system in the form of TFs associated between<br /> displacement at the end of the cable attached to the UV x( L, s ) and traction at the cable's<br /> point attached to the winches T (0, s ) with displacement at the cable’s point attached to the<br /> winches x(0, s ) , we’ll consider a piece of cable as its axis coincides with the axis Oz when<br /> impacting the traction T, z is the cable’s length without load, y and x  y  z are cable’s<br /> length and its deformation with load (Fig. 3) respectively. Weight of the system (TC –<br /> UV) in the water; elastic force; inertial force occurs when speeding up the system (TC -<br /> UV) and water’s sticky mass as well as frictional force between the cable with water and<br /> cable’s frictional force are the main forces which act on the system (TC - UV).<br /> <br /> <br /> <br /> <br /> Figure 3: The surveyed model of cable´s piece and its deformation.<br /> In the specific conditions [7], the vertical oscillations of the cable’s cross section are<br /> described by differential equations:<br /> T  ET .F .x / z  .F . 2 x / z.t<br />  , (1)<br /> 2 2<br /> T / z  m. z / t   .x / t<br /> where, ET - cable’s elastic modulus, for the metal cables: ET  1,65.105 Mpa ; F - cable’s<br /> cross sectional area which equals the total area of the core’s cross sections [7];  - cable’s<br /> <br /> <br /> 78 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> friction coefficient; m - mass of a cable’s length per measurement unit (kg);  - the<br /> friction coefficient between the cable with water (s-1). After replacing   ET .F . mp to the<br /> first equation of (1) we have<br /> T  ET .F (x / z   mp . 2 x / z.t ) , (2)<br /> and after performing Laplace transform for the equations (1), (2) we have<br /> 2<br /> T / z  m.s .x( z , s )   .s.x( z , s )<br />  , (3)<br /> T  ET .F .(1   mp .s ).x( z , s ) / z<br /> with,  mp - time constant of cable’s internal friction (s).<br /> When performing Laplace transform for equations (3) according to the variable z, the<br /> linear algebraic equations are obtained, where T (0, s ), x(0, s ) - the images of traction (T)<br /> and the upper cable’s displacement, and u - argument of the Laplace image for the<br /> function of variable z:<br /> u.T (u , s )  T (0, s )  m.s 2 .x(u , s )   .s.x(u, s )<br />  (4)<br /> T (u, s )  ET .F .(1   mp .s ).(u.x(u , s )  x(0, s ))<br /> Transforming the equations (4) into the Laplace image of the tractions of cable’s cross<br /> section from the distance z ( T (u , s ) ) and section’s displacement ( x(u , s ) ). After<br /> transforming them back to the original with variable z, we have:<br />  z z<br /> T ( z , s )  T (0, s ).ch( w .r ( s ))  x(0, s ).Z w ( s ).sh( w .r ( s ))<br />  , (5)<br />  x( z , s )  x(0, s ).ch( z .r ( s ))  T (0, s ) .sh( z .r ( s ))<br />  w Z w (s) w<br /> <br /> where, Z w ( s )  bw ( s 2   mp .s )(1   mp .s ), bw  m.w - the wave’s impedance;<br /> <br /> r ( s )  ( s 2   mp .s ) /(1   mp .s ) - propagation coefficient of oscillations in the operator;<br /> w  E T .F / m - wave’s propagation speed in the cable (m/s);  mp   / m - relative drag<br /> coefficient along the cable (1/s). Using Mason’s rules mentioned in [9] and the following<br /> relation<br /> T ( L, s )  (mno .s 2  kno .s ).x( L, s ) , (6)<br /> with, kno - water’s drag coefficient caused by vehicle’s movement; mno - vehicle’s mass in<br /> the water, the TFs which associate between displacement at the end of cable attached to<br /> the UV and traction at the cable's point attached to the winches with displacement at the<br /> point attached load will have form:<br /> 1<br /> x ( L, s )  m .s 2  kno .s <br /> Wx ( L, s )    ch( L .r ( s ))  no .sh( L .r ( s ))  (7)<br /> x(0, s )  Z w ( s) <br /> <br /> T (0, s )  m .s 2  kno .s <br /> WT (0, s )    Z w ( s ).Wx ( L, s )  sh( L .r ( s ))  no .ch( L .r ( s ))  , (8)<br /> x(0, s )  Z w ( s) <br />  <br /> where,  L  L / w - wave’s propagation time along the cable. In this case, the traction and<br /> the static deformation are neglected. Therefore, TFs (7) and (8) can be used not only for<br /> the vertical cable but also for the cable deviating from the vertical axis because of<br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 79<br /> Kỹ thuật điều khiển & Điện tử<br /> <br /> hydrodynamic forces, which are generated by the ship’s movement and TUV’s operation.<br /> For the cable “KGP-1-20” which has external diameter 23,4mm;<br /> m  1,63kg / m ; w  4020m / s ;  mp  0,01s;   0,05s 1 , and TUV with<br /> kno  1800kg / s; mno  5860kg , the TF (7) becomes:<br /> 1<br />  L s2  0,0307s 5860.s2 1800.s L s2  0,0307s <br /> Wx (L, s)  ch( . ) .sh( . ) (9)<br />  4020 1 0,01s 6552,6. (s2<br />  0,0307s)(1 0,01s) 4020 1 0,01s <br />  <br /> 2.2. Random sea-waves model<br /> Sea-waves are a nonstationary random process which has chaotic features. Each of sea-<br /> waves has a different amplitude and period. During the short time, sea-waves can be<br /> considered a stationary mechanical process. This simplifies the mathematical descriptions<br /> as well as the survey on the sea-wave’s influence on the various objects or the ship’s lurch.<br /> When the wave’s peaks  compliance with the rules of normal distribution [9], the<br /> spectral density of wave’s peaks can be defined based on the variance D and its<br /> expectations m by the following expression:<br /> <br /> 1  (  m )2 <br /> f ( )  exp   . (10)<br /> 2 D  2 D<br /> <br />  <br /> The expectation and the variance do not allow us to realize the random process. To<br /> perform this, first its spectral density needs to be defined. For sea-waves, the expectation<br /> of wave’s peaks  equals zero, and correlation function K ( ) is defined by multiplying<br />  (t ) by  (t   ) over time, where   t2  t1 , and T is the observation time to realize the<br /> private process<br /> T<br /> 1<br /> K ( )   (t ) (t   )d ; T   (11)<br /> T 0<br /> There is a relationship between the correlation function K ( ) and the spectral density<br /> S ( ) of the process  (t ) through the Fourier transform:<br /> <br /> S ( )  2  K ( ) cos( )d (12)<br /> 0<br /> <br /> There are many different ways to calculate the spectral density S ( ) of the sea-<br /> waves. In this case, we will just cite one of typical spectral calculated formulas. In<br /> accordance with results from [7, 9], the normalized spectral density of sea-waves is<br /> defined by expression<br /> S  12 ( x )  5 . x 5 exp(  1, 25. x  4 ) (13)<br /> with relative frequency: x   /  m ;  m  0, 7 1 ( m - spectrum’s maximum<br /> frequency,  - sea-wave’s average angular frequency).<br /> To receive some random process with given spectral density such as (13), the white<br /> noise which has constant spectral density at all angular frequencies   [0, ) need to be<br /> <br /> <br /> <br /> 80 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> transformed by using the filter, so that its TF is rational fraction and squared amplitude-<br /> frequency characteristic of this filter approximates the given spectral density. Therefore, a<br /> rational fraction that is closest to the exponential original of (13) needs to be defined. One<br /> of the typical algorithms used for estimating (13) is presented in [10]. The received<br /> approximate expression is:<br /> 4,34 x 6<br /> s36 ( x)  (14)<br /> ( x 4  1,18 x 2  0,52)( x 4  1,38 x 2  1, 29)( x 4  2,95 x 2  11,73)<br /> The TF of the filter that forms sea-waves on the basis of expression (14) needs to be<br /> defined. The squared amplitude-frequency characteristic (the module of this filter)<br /> associated with spectral density through expression [10]:<br /> s ( x)  W f ( jx)W f ( jx) (15)<br /> In general , when the estimated spectrum<br /> ( x 2 )n<br /> s ( x)  As ( n  3) / 2<br /> , (16)<br /> 4 2<br />  ( x  n1i x  n0i )<br /> i 1<br /> satisfies the conditions of module: n - the odd numbers, and n1i - the real numbers with<br /> n1i  2 n0i , n0i  0 , then the filter’s TF becomes:<br /> sn<br /> W f ( s)  A f ( n 3) / 2<br /> (17)<br /> 2<br />  ( s  b1i s  b0i )<br /> i 1<br /> <br /> where: A f  As ; b0i  n0i ; b1i  2 n0i  n1i . Therefore, the TF of filter matching with<br /> estimated expression (13) will get the form:<br /> 3,694s 3<br /> W f ( s)  (18)<br /> ( s 2  0,5111s  0,7208)( s 2  0,9465s  1,136)( s 2  1,974s  3, 425)<br /> Sea-waves impact on the TUV through the ship’s lurch. When the ship lurches, the<br /> point attached to the load (that is the end of cable which goes out of the winches put on the<br /> ship, then connected to the TUV) will oscillate. The TF associated between Laplace<br /> images of the vertical displacement at the point attached to the load x0 ( s) and the sea-<br /> waves  ( s ) becomes<br /> <br /> x0 ( s ) 2<br /> W  s    (19)<br />  (s) 2 3<br /> s   s  2<br /> 2<br /> 0,8<br /> where,   is the particular angular frequency [6,7].<br /> T<br /> 2.3. The estimation of transfer functions<br /> There are the certain difficulties simulating the influence of sea-waves on the TUV’s<br /> working depth on the basis of (7). These difficulties stem from the TF Wx ( L, s) containing<br /> the inertial and transcendental expressions. The mathematical tools only allow us to<br /> perform with such expressions in the frequency domain, and cannot survey the object<br /> matching with this TF in the time domain. To solve this problem, it is necessary to<br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 81<br /> Kỹ thuật điều khiển & Điện tử<br /> <br /> perform an intermediate estimated step for transforming the complex TFs into rational<br /> expressions [11,12]. After replacing hyperbolic functions in (7) by the exponential<br /> correspondence, the TF becomes<br /> s 2  vmp s<br />  L<br /> 1 mp s<br /> 2e<br /> Wx ( L, s )  (20)<br /> s 2  vmp s  s 2  vmp s <br /> 2 L 2 L<br /> 1 mp s mno s 2  kno s  1 mp s <br /> 1 e  .1  e <br /> mw. ( s 2  vmp s )(1   mp s )  <br />  <br /> The function (20) by the rational fractions can be estimated in two ways: By estimating<br /> each of inertial and transcendental components by a rational fraction and then replacing<br /> these expressions to the original (20); By estimating a unique approximated expression<br /> using numerical method which will be considered in other studies. When following the<br /> first way, the wave TF<br /> s s<br /> Yw   , (21)<br /> Z w m.w. ( s 2   s )(1   s )<br /> mp mp<br /> <br /> and the spread function of oscillation in the cable<br />  s 2  vmp s <br /> <br /> Wx  exp  L .  (22)<br />  1   mp .s <br />  <br /> will be estimated by the rational fractions.<br /> To estimate Yw , we express it by the product of two functions: Y (specific to friction<br /> of the cable with water) and Y (specific to friction in the cable):<br />  mp<br /> Yw  Y .Y ; Y  s / ( s 2   mp s )  1/ (1 <br /> ); Y  1/ (1   mp s ) (23)<br /> s<br /> and then estimate each of the items [11]. The estimated algorithm for the function Y is as<br /> follows: 1- Replacing the variable s by the variable  mp .r and transform expression Y to<br /> r<br /> Y (r )  ; 2- Establishing the function: f  r 2  r  r ; 3- Performing Pade’s<br /> 2<br /> r r<br /> estimation for the function f using Chebyshev’s polynomials in the previous segment by<br /> rational function f a so that the numerator’s order equals to the denominator’s order<br /> r<br /> ( m  n ); 4- Defining function f a1 by the formula: f a1  ; 5- The last estimated<br /> fa  r<br /> s<br /> expression Y a of the function Y is obtained by replacing r  to the function f a1 .<br /> v<br /> When performing according to this procedure with estimated segment [0.0002,0.2], the<br /> five order estimated function Y a is shown as:<br /> (s  0,4048vmp )(s  0,08523vmp )(s  0,01476vmp )(s  0,001161vmp )s<br /> Yva  (24)<br /> (s  0,7668vmp )(s  0,1883vmp )(s  0,03712vmp )(s  0,004918vmp )(s  0,0001296vmp )<br /> <br /> <br /> <br /> <br /> 82 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> The component Y is estimated as follows: 1- Establishing the function:<br /> 1 q 1<br /> f  ; q   mp .s ; 2- Performing Pade’s approximation for the function f using<br /> q<br /> Chebyshev’s polynomials in the previous segment by rational function f a so that the<br /> numerator’s order equals to the denominator’s order ( m  n ); 3- Finding out the function<br /> 1<br /> f a1 by the formula: f a1  ; 4- The last estimated expression Y a is obtained by<br /> f a .q  1<br /> replacing q   mp .s to the function f a1 . With the estimated piece [0.0002,0.2], the<br /> estimated function Y a is performed as follows:<br /> (1  0,4048 mp .s)(1  0,0852 mp .s)(1  0,0148 mp .s)(1  0,0012 mp .s)<br /> Y a  (25)<br /> (1  0,7668 mp .s)(1  0,1883 mp .s)(1  0,0371 mp .s)(1  0,0049 mp .s)(1  0,00013 mp .s)<br /> The function Wx is estimated by transforming it to the equivalence form<br />  L<br /> W  W .W  exp(  s .( s  v )  s )  (1 /(1   . s )  m p )<br />  x xv x mp mp , (26)<br />  L<br />  <br /> W xv  exp(  s .( s  v )  s ), W x  1 /(1   m p .s ) m p<br /> and then estimate each of them.<br /> The element Wxv is estimated through the following steps: 1- Establishing function f r1<br /> according to expression: f r1   mp ( r (r  1)  r ); r  s / mp ; 2- Defining the function f r 2<br /> by the formula: f r 2  f r1 / vmp .r ; 3- Performing Pade’s estimation for the function f r 2<br /> using Chebyshev’s polynomials in the previous segment by rational function f r 2 a with the<br /> numerator’s order ( m  3 ) and the denominator’s order ( n  4 ); 4- Defining the function<br /> f<br /> f s 2 a by formula: f s 2 a  r 2 a ; r  s / vmp ; 5- The estimated expression Wxva for the<br /> vmp .r<br /> 0,5.v<br /> mp<br /> (1  e )<br /> original Wxv is defined by using formula: Wxva  1  f s 2 a .k ; k  . The<br /> 0,5.vmp<br /> estimated TF Wxva with estimated piece [0.0001, 1] becomes:<br /> 0,9986(1  exp(0,5vmp )) L (s  0,3925vmp )(s  0,0598vmp )(s  0,0033vmp )s<br /> Wxva  1  (27)<br /> (s  0,5518vmp )(s  0,1327vmp )(s  0,0152vmp )(s  0,00032vmp )<br /> The ingredient Wx is estimated by the Bessel’s polynomials Bn ( s) . The estimated<br /> function Wx a becomes:<br /> m<br />   a <br /> Wx a  exp((1  a).s ). Wbn  s   ; a  1 (28)<br />   m <br /> Bn (0)<br /> where Wbn ( s )  with Bn ( s) – n-th order Bessel polynomial, and Bn (0) is its value<br /> Bn ( s )<br /> when s  0 . when m  2; n  4 , the estimated function Wx a becomes:<br /> <br /> <br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 83<br /> Kỹ thuật điều khiển & Điện tử<br /> <br />   0,5<br /> mp   <br /> 11025exp110.  .L.s<br />  <br />    L    mp <br /> 0,5<br /> Wxa  2 2<br /> ;a 3,6.  (29)<br />   <br /> 0,5   <br /> 0,5   L <br /> 25a2mpLs2 28,962. mp  Ls 9,14 25a2mpLs2 21,09. mp  Ls 11,48<br /> <br />   L  <br />   L  <br /> <br /> with  L  50 mp , L  0,5s . In the domain  L  0,5  0,1 , the estimated functions with<br /> smaller order of denominator are used to reduce the estimated errors<br /> 0,5<br /> 105exp((1  a) L s)   mp <br /> Wx a  ; a  2,5.  (30)<br />  <br /> (a L s)2  5,792a L s  9,1401) (a L s)2  4,2076a L s  11,484)   L <br /> 2.4. Evaluating the sea-waves influence on the change of TUV´s depth<br /> With the filter forming the sea-waves which has the TF (18), the TF which defines the<br /> change of TUV’s working depth by acting of sea-waves becomes:<br /> W fL ( s )  W f ( s )W ( s )Wx ( L, s ) , (31)<br /> where W ( s ) - the TF which represents the relationship between the vertical displacement<br /> of the point attached to the load x0 and wave peaks  (19); Wx ( L, s ) - the TF which<br /> represents the relationship between the UV’s vertical displacement and cable’s point<br /> attached to the winches x0 (9).<br /> Based on the above results, Fig. 4 shows the structure diagram which simulates the<br /> influence of sea-waves on the change TUV’s depth using (31) and the estimated<br /> expressions (18), (19), (24), (25), (27), (29), in which, blocks “Transfer fnc”, “Transfer<br /> Fnc1”, “Transfer Fnc2” describe the filter forming sea-waves (18), it represents the change<br /> of wave peaks over time. The block "Transfer Fnc3" represents vertical displacement of<br /> the point attached to the load, which described by the transfer function (19) with   1 .<br /> The block "Transfer Fnc4" matches the transfer function: 1/(mno .s  kno ) . Subsystem,<br /> Subsystems 1,2,3,4 are created by the blocks "Transfer Fnc" and "Transport Delay", they<br /> match with the estimated expressions (24,25,27,29). The calculation was performed for the<br /> cable “KGP-1-20” and the simulating results are showed on the Fig. 5.<br /> <br /> <br /> <br /> <br /> Figure 4: The structure diagram evaluates the change<br /> of TUV’s depth under the sea-waves.<br /> Fig. 5a shows that the ship plays the role of a low-pass filter. Displacement of point<br /> attached to the load will be slower than the wave peaks, and the fast oscillating<br /> <br /> <br /> 84 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br /> Nghiên cứu khoa học công nghệ<br /> <br /> components were eliminated. Fig. 3b reflects the complex process in the system (TC -<br /> UV). In this case, when simulating the change of TUV’s working depth, the delay due to<br /> wave’s spread along the cable was neglected, in which, the displacement of the cable’s end<br /> attached to the UV will be slower than the displacement of point attached to the load, with<br /> L  8km , a period  L  L / w  2s .<br /> <br /> <br /> <br /> <br /> a) b)<br /> Figure 5: The acting of sea-waves to the system (Ship – TC – UV).<br /> a) The change of wave peaks (line (1)) and displacement of point attached load (line (2));<br /> b) The change of TUV’s working depth (line (1)) and displacement of point attached load (line (2)).<br /> 3. CONCLUSION<br /> The paper presents the solution for estimating influence of sea-waves on the TUV’s<br /> working depth. This solution are performed with the following activities: modeling the<br /> structure of the TC - UV system, modeling the random form of sea-waves, estimating the<br /> expressions of sea-wave’s spectrum and ship’s lurch. The proposed solution is successfully<br /> tested on the Matlab – Simulink simulation experiments. Based on this solution, it is<br /> possible to carry out other research on synthesizing and evaluating the automatic control<br /> system to stabilize the TUV’s working depth by a cable by adjusting according to the<br /> noise (random sea-waves).<br /> REFERENCES<br /> [1]. Kamman J. W., T. C. Nguyen, and J. W. Crane. “Modeling Towed Cable Systems<br /> Dynamics”. Proceeding of OCEANS, vol. 5, pp. 1484-1489, 1989.<br /> [2]. Patterson A. M., J. H. Spence, and R. W. Fischer. “Evaluation of underwater noise<br /> from vessels and marine activities”. In the IEEE/OES RIO Acoustics Symposium,<br /> pp. 1-9, 2013.<br /> [3]. Sgarioto D. E. “The influence of shallow water waves on the REMUS autonomous<br /> underwater vehicle”. DTA Report, ISSN 1175-6594, 2011.<br /> [4]. Bezverkhii A. I., V. F. Kornienko, and N. A. Shul´ga. “The viscoelastic effect of the<br /> cable on the dynamics of an underwater towed system suspended from a buoy”. In<br /> the International Applied Mechanics, Vol. 37, No. 8, 2001.<br /> [5]. Buckham B., M. Nahon. “Dynamics and control of a towed underwater vehicle<br /> system, part I: model development”. Ocean Engineering 30 (2003) 453–470.<br /> [6]. Рапопорт Э.Я. “Анализ и синтез систем автоматического управления с<br /> распределенными параметрами”. Э.Я. Рапопорт. - М.: Высш. шк., 2005.<br /> [7]. Судовые устройства: Спровочник/ Под ред. М.П. Александрова. – Л.:<br /> Судостроение, 1987. – 656с.<br /> [8]. Герасимова Г.Н. и другие. “Топологические методы анализа в электротехнике и<br /> <br /> <br /> <br /> Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 85<br /> Kỹ thuật điều khiển & Điện tử<br /> <br /> автоматике”: - Владивосток: Дальнаука, 2001.-232с.<br /> [9]. “Справочник по теории корабля”: В 3-х т. Т. 2. Статика судов. Качка судов.<br /> Судовые движители/ Под ред. Я.И. Войткунского. – Л.: Судостроение, 1985. –<br /> 440с.<br /> [10]. Мошиц Г., Хорн П. “Проектирование активных фильтров”. – М.: Мир, 1984.–<br /> 320с.<br /> [11]. Демидович, Б.П., “Основы вычислительной математики”, Б. П. Демидович, И.<br /> А. Марон. — 5-е изд., стер. — СПб.: Лань, 2006. — 672 с.<br /> [12]. Gubarev V. F., “Rational Approximation of distributed parameter systems”, J.<br /> Cybernetics and Systems Analysis. – 2008. – Vol. 44. – №2. – Pp. 234-246.<br /> TÓM TẮT<br /> NGHIÊN CỨU ĐÁNH GIÁ SỰ ẢNH HƯỞNG CỦA SÓNG BIỂN<br /> ĐẾN ĐỘ SÂU HOẠT ĐỘNG CỦA THIẾT BỊ THÁM HIỂM<br /> DƯỚI NƯỚC ĐƯỢC LAI DẮT BẰNG DÂY<br /> Bài báo trình bày các vấn đề có liên quan tới sự ảnh hưởng của sóng biển đến<br /> độ sâu hoạt động của các thiết bị thám hiểm dưới nước không người lái được lai dắt<br /> bằng dây bao gồm: Xác định hàm truyền của hệ dây- thiết bị thám hiểm. Phân tích<br /> các đặc trưng sóng, mô hình hóa sóng biển và xác định hàm truyền của bộ lọc hình<br /> thành sóng biển. Xem xét vấn đề xấp xỉ hóa hàm truyền của hệ dây – thiết bị và<br /> khảo sát tác động của sóng biển đến độ sâu hoạt động của thiết bị trong miền thời<br /> gian. Phần cuối bài báo tiến hành mô phỏng sóng biển và đánh giá tác động của<br /> sóng biển đến sự dao động của thiết bị theo phương thẳng đứng đối với một hệ dây<br /> – thiết bị cụ thể. Các kết quả của bài báo có thể được sử dụng khi thiết kế chế tạo<br /> các thiết bị thám hiểm dưới nước được lai dắt bằng dây đặc biệt là khi xây dựng các<br /> bộ điều chỉnh ổn định độ sâu hay bộ giảm chấn gắn trên thiết bị thám hiểm, cũng<br /> như việc thiết kế các thiết bị chuyên dụng khác.<br /> Từ khóa: Thiết bị thám hiểm dưới nước, Hàm truyền, Mô hình hóa sóng biển, Đối tượng có tham số phân bố,<br /> Xấp xỉ hóa hàm truyền, Mật độ phổ sóng biển.<br /> <br /> Nhận bài ngày 31 tháng 3 năm 2016<br /> Hoàn thiện ngày 14 tháng 4 năm 2016<br /> Chấp nhận đăng ngày 20 tháng 4 năm 2016<br /> <br /> Địa chỉ: 1Học viện Kỹ thuật quân sự- 236 Hoàng Quốc Việt Bắc Từ Liêm Hà Nội.<br /> 2<br /> Đại học Đồng Nai – Số 4 Khu phố 3 Lê Quý Đôn, Biên Hòa, Đồng Nai.<br /> *<br /> Email: npdangdtys@yahoo.com.vn<br /> <br /> <br /> <br /> <br /> 86 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2