Nghiên cứu khoa học công nghệ<br />
<br />
A STUDY ON THE ESTIMATION OF SEA-WAVES INFLUENCE ON<br />
THE WORKING DEPTH OF TOWED UNDERWATER VEHICLE<br />
Nguyen Phu Dang1*, Pham Tuan Thanh1, Tran Xuan Tinh1, Dao Sy Luat2<br />
Abstract: The article presents the problem associated with the influence of sea-<br />
waves on the working depth of a towed underwater vehicle (TUV) including:<br />
defining transfer function (TF) of the towing cable - underwater vehicle system;<br />
analyzing the sea-wave’s features, modeling and defining the TF of filter which<br />
forms the sea-waves; estimating the TFs of the system (TC - UV) and researching<br />
the influence of sea-waves to the TUV’s working depth in the time domain.<br />
Simulating and evaluating the influence of sea-waves on the TUV’s vertical<br />
oscillation for a specific system will be considered at the end of the article. The<br />
received results can be used for designing and manufacturing TUVs, building a<br />
regulator to stabilize the TUV’s working depth against sea-waves and damper, as<br />
well as designing other specialized underwater devices.<br />
Keywords: Towed underwater vehicle, Transfer function, Sea-waves model, Objects with distributed<br />
parameters, Estimation of transfer function, Sea-wave’s spectral density.<br />
<br />
1. INTRODUCTION<br />
Recently, Towed Underwater Vehicles (TUV) have been powerfully developed due to<br />
their good capabilities of exploring the ocean environment. In comparison to Autonomous<br />
Underwater Vehicles (AUV), TUVs are able to work much longer and much deeper under<br />
the water, to communicate much easier and more exacte to the ship, and to survey the<br />
ocean floor more quickly.<br />
Basically, to operate a TUV, it is necessary to have a 3-part system including ship,<br />
towed cable (TC), and underwater vehicle (UV) as the illustration in Fig. 1. The towed<br />
cable is an essential device for both mechanical and electrical connections. Moreover, it is<br />
“very important to many marine meassurement and salvage operations” [1].<br />
<br />
<br />
<br />
<br />
Figure 1: The 3-part system of ship, towed Figure 2: The main tasks of this research.<br />
cable, and UV.<br />
However, working with a towed cable, also called umbilical cable, in the ocean<br />
environment with the presence of sea waves is not easy for an UV. The sea waves<br />
regularly make the cable elastic. The elastic causes the UV to operate unsteadily. There<br />
have been many researches dealing with the influence of sea waves on the components of<br />
the 3-part system such as [2] evaluated sea-waves noise effect on the ship, [3] analysed the<br />
influence of water waves on an AUV, [4] proposed an algorithm to analyse the<br />
viscoelastic effect of sea water on the cable.<br />
<br />
<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 77<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
In earlier works, many researchers achieved positive results in estimating the effect of<br />
sea waves on the towed cable [1, 5]. E.g. [5] developed a numerical model of the towed<br />
cable system by using series of differential equations to analyse discrete elastic elements<br />
along the cable. In a similar way, [1] performed modeling towed cable systems dynamics<br />
by dividing the cable system into discrete elements and formulating the equations of<br />
motion for the elements. The drawback of [5] and [1] is the use of a large number of<br />
differential computations.<br />
In our research, the simple calculations for estimating sea-waves influence on the<br />
towed underwater vehicle are proposed. The simple calculations are taken from the<br />
approximations of the complex mathematical equations for modeling the sea waves and<br />
modeling the TC-UV system. The main works of the research are illustrated on Fig. 2.<br />
2. CONTENT OF THE STUDY<br />
2.1. Modeling the TC-UV system<br />
Acording to [6], the TC – UV system contains distributed parameters. It can be<br />
described by the partial derivative differential equations or the integral equations, the<br />
integral-differential equations and many others,... which are more complex than the<br />
equations of objects with concentrated parameters. As a result, the TFs contain not only<br />
the high order rational fractions but also the inertial and transcendental expressions [6].<br />
To model the structure of the TC - UV system in the form of TFs associated between<br />
displacement at the end of the cable attached to the UV x( L, s ) and traction at the cable's<br />
point attached to the winches T (0, s ) with displacement at the cable’s point attached to the<br />
winches x(0, s ) , we’ll consider a piece of cable as its axis coincides with the axis Oz when<br />
impacting the traction T, z is the cable’s length without load, y and x y z are cable’s<br />
length and its deformation with load (Fig. 3) respectively. Weight of the system (TC –<br />
UV) in the water; elastic force; inertial force occurs when speeding up the system (TC -<br />
UV) and water’s sticky mass as well as frictional force between the cable with water and<br />
cable’s frictional force are the main forces which act on the system (TC - UV).<br />
<br />
<br />
<br />
<br />
Figure 3: The surveyed model of cable´s piece and its deformation.<br />
In the specific conditions [7], the vertical oscillations of the cable’s cross section are<br />
described by differential equations:<br />
T ET .F .x / z .F . 2 x / z.t<br />
, (1)<br />
2 2<br />
T / z m. z / t .x / t<br />
where, ET - cable’s elastic modulus, for the metal cables: ET 1,65.105 Mpa ; F - cable’s<br />
cross sectional area which equals the total area of the core’s cross sections [7]; - cable’s<br />
<br />
<br />
78 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
friction coefficient; m - mass of a cable’s length per measurement unit (kg); - the<br />
friction coefficient between the cable with water (s-1). After replacing ET .F . mp to the<br />
first equation of (1) we have<br />
T ET .F (x / z mp . 2 x / z.t ) , (2)<br />
and after performing Laplace transform for the equations (1), (2) we have<br />
2<br />
T / z m.s .x( z , s ) .s.x( z , s )<br />
, (3)<br />
T ET .F .(1 mp .s ).x( z , s ) / z<br />
with, mp - time constant of cable’s internal friction (s).<br />
When performing Laplace transform for equations (3) according to the variable z, the<br />
linear algebraic equations are obtained, where T (0, s ), x(0, s ) - the images of traction (T)<br />
and the upper cable’s displacement, and u - argument of the Laplace image for the<br />
function of variable z:<br />
u.T (u , s ) T (0, s ) m.s 2 .x(u , s ) .s.x(u, s )<br />
(4)<br />
T (u, s ) ET .F .(1 mp .s ).(u.x(u , s ) x(0, s ))<br />
Transforming the equations (4) into the Laplace image of the tractions of cable’s cross<br />
section from the distance z ( T (u , s ) ) and section’s displacement ( x(u , s ) ). After<br />
transforming them back to the original with variable z, we have:<br />
z z<br />
T ( z , s ) T (0, s ).ch( w .r ( s )) x(0, s ).Z w ( s ).sh( w .r ( s ))<br />
, (5)<br />
x( z , s ) x(0, s ).ch( z .r ( s )) T (0, s ) .sh( z .r ( s ))<br />
w Z w (s) w<br />
<br />
where, Z w ( s ) bw ( s 2 mp .s )(1 mp .s ), bw m.w - the wave’s impedance;<br />
<br />
r ( s ) ( s 2 mp .s ) /(1 mp .s ) - propagation coefficient of oscillations in the operator;<br />
w E T .F / m - wave’s propagation speed in the cable (m/s); mp / m - relative drag<br />
coefficient along the cable (1/s). Using Mason’s rules mentioned in [9] and the following<br />
relation<br />
T ( L, s ) (mno .s 2 kno .s ).x( L, s ) , (6)<br />
with, kno - water’s drag coefficient caused by vehicle’s movement; mno - vehicle’s mass in<br />
the water, the TFs which associate between displacement at the end of cable attached to<br />
the UV and traction at the cable's point attached to the winches with displacement at the<br />
point attached load will have form:<br />
1<br />
x ( L, s ) m .s 2 kno .s <br />
Wx ( L, s ) ch( L .r ( s )) no .sh( L .r ( s )) (7)<br />
x(0, s ) Z w ( s) <br />
<br />
T (0, s ) m .s 2 kno .s <br />
WT (0, s ) Z w ( s ).Wx ( L, s ) sh( L .r ( s )) no .ch( L .r ( s )) , (8)<br />
x(0, s ) Z w ( s) <br />
<br />
where, L L / w - wave’s propagation time along the cable. In this case, the traction and<br />
the static deformation are neglected. Therefore, TFs (7) and (8) can be used not only for<br />
the vertical cable but also for the cable deviating from the vertical axis because of<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 79<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
hydrodynamic forces, which are generated by the ship’s movement and TUV’s operation.<br />
For the cable “KGP-1-20” which has external diameter 23,4mm;<br />
m 1,63kg / m ; w 4020m / s ; mp 0,01s; 0,05s 1 , and TUV with<br />
kno 1800kg / s; mno 5860kg , the TF (7) becomes:<br />
1<br />
L s2 0,0307s 5860.s2 1800.s L s2 0,0307s <br />
Wx (L, s) ch( . ) .sh( . ) (9)<br />
4020 1 0,01s 6552,6. (s2<br />
0,0307s)(1 0,01s) 4020 1 0,01s <br />
<br />
2.2. Random sea-waves model<br />
Sea-waves are a nonstationary random process which has chaotic features. Each of sea-<br />
waves has a different amplitude and period. During the short time, sea-waves can be<br />
considered a stationary mechanical process. This simplifies the mathematical descriptions<br />
as well as the survey on the sea-wave’s influence on the various objects or the ship’s lurch.<br />
When the wave’s peaks compliance with the rules of normal distribution [9], the<br />
spectral density of wave’s peaks can be defined based on the variance D and its<br />
expectations m by the following expression:<br />
<br />
1 ( m )2 <br />
f ( ) exp . (10)<br />
2 D 2 D<br />
<br />
<br />
The expectation and the variance do not allow us to realize the random process. To<br />
perform this, first its spectral density needs to be defined. For sea-waves, the expectation<br />
of wave’s peaks equals zero, and correlation function K ( ) is defined by multiplying<br />
(t ) by (t ) over time, where t2 t1 , and T is the observation time to realize the<br />
private process<br />
T<br />
1<br />
K ( ) (t ) (t )d ; T (11)<br />
T 0<br />
There is a relationship between the correlation function K ( ) and the spectral density<br />
S ( ) of the process (t ) through the Fourier transform:<br />
<br />
S ( ) 2 K ( ) cos( )d (12)<br />
0<br />
<br />
There are many different ways to calculate the spectral density S ( ) of the sea-<br />
waves. In this case, we will just cite one of typical spectral calculated formulas. In<br />
accordance with results from [7, 9], the normalized spectral density of sea-waves is<br />
defined by expression<br />
S 12 ( x ) 5 . x 5 exp( 1, 25. x 4 ) (13)<br />
with relative frequency: x / m ; m 0, 7 1 ( m - spectrum’s maximum<br />
frequency, - sea-wave’s average angular frequency).<br />
To receive some random process with given spectral density such as (13), the white<br />
noise which has constant spectral density at all angular frequencies [0, ) need to be<br />
<br />
<br />
<br />
80 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
transformed by using the filter, so that its TF is rational fraction and squared amplitude-<br />
frequency characteristic of this filter approximates the given spectral density. Therefore, a<br />
rational fraction that is closest to the exponential original of (13) needs to be defined. One<br />
of the typical algorithms used for estimating (13) is presented in [10]. The received<br />
approximate expression is:<br />
4,34 x 6<br />
s36 ( x) (14)<br />
( x 4 1,18 x 2 0,52)( x 4 1,38 x 2 1, 29)( x 4 2,95 x 2 11,73)<br />
The TF of the filter that forms sea-waves on the basis of expression (14) needs to be<br />
defined. The squared amplitude-frequency characteristic (the module of this filter)<br />
associated with spectral density through expression [10]:<br />
s ( x) W f ( jx)W f ( jx) (15)<br />
In general , when the estimated spectrum<br />
( x 2 )n<br />
s ( x) As ( n 3) / 2<br />
, (16)<br />
4 2<br />
( x n1i x n0i )<br />
i 1<br />
satisfies the conditions of module: n - the odd numbers, and n1i - the real numbers with<br />
n1i 2 n0i , n0i 0 , then the filter’s TF becomes:<br />
sn<br />
W f ( s) A f ( n 3) / 2<br />
(17)<br />
2<br />
( s b1i s b0i )<br />
i 1<br />
<br />
where: A f As ; b0i n0i ; b1i 2 n0i n1i . Therefore, the TF of filter matching with<br />
estimated expression (13) will get the form:<br />
3,694s 3<br />
W f ( s) (18)<br />
( s 2 0,5111s 0,7208)( s 2 0,9465s 1,136)( s 2 1,974s 3, 425)<br />
Sea-waves impact on the TUV through the ship’s lurch. When the ship lurches, the<br />
point attached to the load (that is the end of cable which goes out of the winches put on the<br />
ship, then connected to the TUV) will oscillate. The TF associated between Laplace<br />
images of the vertical displacement at the point attached to the load x0 ( s) and the sea-<br />
waves ( s ) becomes<br />
<br />
x0 ( s ) 2<br />
W s (19)<br />
(s) 2 3<br />
s s 2<br />
2<br />
0,8<br />
where, is the particular angular frequency [6,7].<br />
T<br />
2.3. The estimation of transfer functions<br />
There are the certain difficulties simulating the influence of sea-waves on the TUV’s<br />
working depth on the basis of (7). These difficulties stem from the TF Wx ( L, s) containing<br />
the inertial and transcendental expressions. The mathematical tools only allow us to<br />
perform with such expressions in the frequency domain, and cannot survey the object<br />
matching with this TF in the time domain. To solve this problem, it is necessary to<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 81<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
perform an intermediate estimated step for transforming the complex TFs into rational<br />
expressions [11,12]. After replacing hyperbolic functions in (7) by the exponential<br />
correspondence, the TF becomes<br />
s 2 vmp s<br />
L<br />
1 mp s<br />
2e<br />
Wx ( L, s ) (20)<br />
s 2 vmp s s 2 vmp s <br />
2 L 2 L<br />
1 mp s mno s 2 kno s 1 mp s <br />
1 e .1 e <br />
mw. ( s 2 vmp s )(1 mp s ) <br />
<br />
The function (20) by the rational fractions can be estimated in two ways: By estimating<br />
each of inertial and transcendental components by a rational fraction and then replacing<br />
these expressions to the original (20); By estimating a unique approximated expression<br />
using numerical method which will be considered in other studies. When following the<br />
first way, the wave TF<br />
s s<br />
Yw , (21)<br />
Z w m.w. ( s 2 s )(1 s )<br />
mp mp<br />
<br />
and the spread function of oscillation in the cable<br />
s 2 vmp s <br />
<br />
Wx exp L . (22)<br />
1 mp .s <br />
<br />
will be estimated by the rational fractions.<br />
To estimate Yw , we express it by the product of two functions: Y (specific to friction<br />
of the cable with water) and Y (specific to friction in the cable):<br />
mp<br />
Yw Y .Y ; Y s / ( s 2 mp s ) 1/ (1 <br />
); Y 1/ (1 mp s ) (23)<br />
s<br />
and then estimate each of the items [11]. The estimated algorithm for the function Y is as<br />
follows: 1- Replacing the variable s by the variable mp .r and transform expression Y to<br />
r<br />
Y (r ) ; 2- Establishing the function: f r 2 r r ; 3- Performing Pade’s<br />
2<br />
r r<br />
estimation for the function f using Chebyshev’s polynomials in the previous segment by<br />
rational function f a so that the numerator’s order equals to the denominator’s order<br />
r<br />
( m n ); 4- Defining function f a1 by the formula: f a1 ; 5- The last estimated<br />
fa r<br />
s<br />
expression Y a of the function Y is obtained by replacing r to the function f a1 .<br />
v<br />
When performing according to this procedure with estimated segment [0.0002,0.2], the<br />
five order estimated function Y a is shown as:<br />
(s 0,4048vmp )(s 0,08523vmp )(s 0,01476vmp )(s 0,001161vmp )s<br />
Yva (24)<br />
(s 0,7668vmp )(s 0,1883vmp )(s 0,03712vmp )(s 0,004918vmp )(s 0,0001296vmp )<br />
<br />
<br />
<br />
<br />
82 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
The component Y is estimated as follows: 1- Establishing the function:<br />
1 q 1<br />
f ; q mp .s ; 2- Performing Pade’s approximation for the function f using<br />
q<br />
Chebyshev’s polynomials in the previous segment by rational function f a so that the<br />
numerator’s order equals to the denominator’s order ( m n ); 3- Finding out the function<br />
1<br />
f a1 by the formula: f a1 ; 4- The last estimated expression Y a is obtained by<br />
f a .q 1<br />
replacing q mp .s to the function f a1 . With the estimated piece [0.0002,0.2], the<br />
estimated function Y a is performed as follows:<br />
(1 0,4048 mp .s)(1 0,0852 mp .s)(1 0,0148 mp .s)(1 0,0012 mp .s)<br />
Y a (25)<br />
(1 0,7668 mp .s)(1 0,1883 mp .s)(1 0,0371 mp .s)(1 0,0049 mp .s)(1 0,00013 mp .s)<br />
The function Wx is estimated by transforming it to the equivalence form<br />
L<br />
W W .W exp( s .( s v ) s ) (1 /(1 . s ) m p )<br />
x xv x mp mp , (26)<br />
L<br />
<br />
W xv exp( s .( s v ) s ), W x 1 /(1 m p .s ) m p<br />
and then estimate each of them.<br />
The element Wxv is estimated through the following steps: 1- Establishing function f r1<br />
according to expression: f r1 mp ( r (r 1) r ); r s / mp ; 2- Defining the function f r 2<br />
by the formula: f r 2 f r1 / vmp .r ; 3- Performing Pade’s estimation for the function f r 2<br />
using Chebyshev’s polynomials in the previous segment by rational function f r 2 a with the<br />
numerator’s order ( m 3 ) and the denominator’s order ( n 4 ); 4- Defining the function<br />
f<br />
f s 2 a by formula: f s 2 a r 2 a ; r s / vmp ; 5- The estimated expression Wxva for the<br />
vmp .r<br />
0,5.v<br />
mp<br />
(1 e )<br />
original Wxv is defined by using formula: Wxva 1 f s 2 a .k ; k . The<br />
0,5.vmp<br />
estimated TF Wxva with estimated piece [0.0001, 1] becomes:<br />
0,9986(1 exp(0,5vmp )) L (s 0,3925vmp )(s 0,0598vmp )(s 0,0033vmp )s<br />
Wxva 1 (27)<br />
(s 0,5518vmp )(s 0,1327vmp )(s 0,0152vmp )(s 0,00032vmp )<br />
The ingredient Wx is estimated by the Bessel’s polynomials Bn ( s) . The estimated<br />
function Wx a becomes:<br />
m<br />
a <br />
Wx a exp((1 a).s ). Wbn s ; a 1 (28)<br />
m <br />
Bn (0)<br />
where Wbn ( s ) with Bn ( s) – n-th order Bessel polynomial, and Bn (0) is its value<br />
Bn ( s )<br />
when s 0 . when m 2; n 4 , the estimated function Wx a becomes:<br />
<br />
<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 83<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
0,5<br />
mp <br />
11025exp110. .L.s<br />
<br />
L mp <br />
0,5<br />
Wxa 2 2<br />
;a 3,6. (29)<br />
<br />
0,5 <br />
0,5 L <br />
25a2mpLs2 28,962. mp Ls 9,14 25a2mpLs2 21,09. mp Ls 11,48<br />
<br />
L <br />
L <br />
<br />
with L 50 mp , L 0,5s . In the domain L 0,5 0,1 , the estimated functions with<br />
smaller order of denominator are used to reduce the estimated errors<br />
0,5<br />
105exp((1 a) L s) mp <br />
Wx a ; a 2,5. (30)<br />
<br />
(a L s)2 5,792a L s 9,1401) (a L s)2 4,2076a L s 11,484) L <br />
2.4. Evaluating the sea-waves influence on the change of TUV´s depth<br />
With the filter forming the sea-waves which has the TF (18), the TF which defines the<br />
change of TUV’s working depth by acting of sea-waves becomes:<br />
W fL ( s ) W f ( s )W ( s )Wx ( L, s ) , (31)<br />
where W ( s ) - the TF which represents the relationship between the vertical displacement<br />
of the point attached to the load x0 and wave peaks (19); Wx ( L, s ) - the TF which<br />
represents the relationship between the UV’s vertical displacement and cable’s point<br />
attached to the winches x0 (9).<br />
Based on the above results, Fig. 4 shows the structure diagram which simulates the<br />
influence of sea-waves on the change TUV’s depth using (31) and the estimated<br />
expressions (18), (19), (24), (25), (27), (29), in which, blocks “Transfer fnc”, “Transfer<br />
Fnc1”, “Transfer Fnc2” describe the filter forming sea-waves (18), it represents the change<br />
of wave peaks over time. The block "Transfer Fnc3" represents vertical displacement of<br />
the point attached to the load, which described by the transfer function (19) with 1 .<br />
The block "Transfer Fnc4" matches the transfer function: 1/(mno .s kno ) . Subsystem,<br />
Subsystems 1,2,3,4 are created by the blocks "Transfer Fnc" and "Transport Delay", they<br />
match with the estimated expressions (24,25,27,29). The calculation was performed for the<br />
cable “KGP-1-20” and the simulating results are showed on the Fig. 5.<br />
<br />
<br />
<br />
<br />
Figure 4: The structure diagram evaluates the change<br />
of TUV’s depth under the sea-waves.<br />
Fig. 5a shows that the ship plays the role of a low-pass filter. Displacement of point<br />
attached to the load will be slower than the wave peaks, and the fast oscillating<br />
<br />
<br />
84 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br />
Nghiên cứu khoa học công nghệ<br />
<br />
components were eliminated. Fig. 3b reflects the complex process in the system (TC -<br />
UV). In this case, when simulating the change of TUV’s working depth, the delay due to<br />
wave’s spread along the cable was neglected, in which, the displacement of the cable’s end<br />
attached to the UV will be slower than the displacement of point attached to the load, with<br />
L 8km , a period L L / w 2s .<br />
<br />
<br />
<br />
<br />
a) b)<br />
Figure 5: The acting of sea-waves to the system (Ship – TC – UV).<br />
a) The change of wave peaks (line (1)) and displacement of point attached load (line (2));<br />
b) The change of TUV’s working depth (line (1)) and displacement of point attached load (line (2)).<br />
3. CONCLUSION<br />
The paper presents the solution for estimating influence of sea-waves on the TUV’s<br />
working depth. This solution are performed with the following activities: modeling the<br />
structure of the TC - UV system, modeling the random form of sea-waves, estimating the<br />
expressions of sea-wave’s spectrum and ship’s lurch. The proposed solution is successfully<br />
tested on the Matlab – Simulink simulation experiments. Based on this solution, it is<br />
possible to carry out other research on synthesizing and evaluating the automatic control<br />
system to stabilize the TUV’s working depth by a cable by adjusting according to the<br />
noise (random sea-waves).<br />
REFERENCES<br />
[1]. Kamman J. W., T. C. Nguyen, and J. W. Crane. “Modeling Towed Cable Systems<br />
Dynamics”. Proceeding of OCEANS, vol. 5, pp. 1484-1489, 1989.<br />
[2]. Patterson A. M., J. H. Spence, and R. W. Fischer. “Evaluation of underwater noise<br />
from vessels and marine activities”. In the IEEE/OES RIO Acoustics Symposium,<br />
pp. 1-9, 2013.<br />
[3]. Sgarioto D. E. “The influence of shallow water waves on the REMUS autonomous<br />
underwater vehicle”. DTA Report, ISSN 1175-6594, 2011.<br />
[4]. Bezverkhii A. I., V. F. Kornienko, and N. A. Shul´ga. “The viscoelastic effect of the<br />
cable on the dynamics of an underwater towed system suspended from a buoy”. In<br />
the International Applied Mechanics, Vol. 37, No. 8, 2001.<br />
[5]. Buckham B., M. Nahon. “Dynamics and control of a towed underwater vehicle<br />
system, part I: model development”. Ocean Engineering 30 (2003) 453–470.<br />
[6]. Рапопорт Э.Я. “Анализ и синтез систем автоматического управления с<br />
распределенными параметрами”. Э.Я. Рапопорт. - М.: Высш. шк., 2005.<br />
[7]. Судовые устройства: Спровочник/ Под ред. М.П. Александрова. – Л.:<br />
Судостроение, 1987. – 656с.<br />
[8]. Герасимова Г.Н. и другие. “Топологические методы анализа в электротехнике и<br />
<br />
<br />
<br />
Tạp chí Nghiên cứu KH&CN quân sự, Số 42, 04 - 2016 85<br />
Kỹ thuật điều khiển & Điện tử<br />
<br />
автоматике”: - Владивосток: Дальнаука, 2001.-232с.<br />
[9]. “Справочник по теории корабля”: В 3-х т. Т. 2. Статика судов. Качка судов.<br />
Судовые движители/ Под ред. Я.И. Войткунского. – Л.: Судостроение, 1985. –<br />
440с.<br />
[10]. Мошиц Г., Хорн П. “Проектирование активных фильтров”. – М.: Мир, 1984.–<br />
320с.<br />
[11]. Демидович, Б.П., “Основы вычислительной математики”, Б. П. Демидович, И.<br />
А. Марон. — 5-е изд., стер. — СПб.: Лань, 2006. — 672 с.<br />
[12]. Gubarev V. F., “Rational Approximation of distributed parameter systems”, J.<br />
Cybernetics and Systems Analysis. – 2008. – Vol. 44. – №2. – Pp. 234-246.<br />
TÓM TẮT<br />
NGHIÊN CỨU ĐÁNH GIÁ SỰ ẢNH HƯỞNG CỦA SÓNG BIỂN<br />
ĐẾN ĐỘ SÂU HOẠT ĐỘNG CỦA THIẾT BỊ THÁM HIỂM<br />
DƯỚI NƯỚC ĐƯỢC LAI DẮT BẰNG DÂY<br />
Bài báo trình bày các vấn đề có liên quan tới sự ảnh hưởng của sóng biển đến<br />
độ sâu hoạt động của các thiết bị thám hiểm dưới nước không người lái được lai dắt<br />
bằng dây bao gồm: Xác định hàm truyền của hệ dây- thiết bị thám hiểm. Phân tích<br />
các đặc trưng sóng, mô hình hóa sóng biển và xác định hàm truyền của bộ lọc hình<br />
thành sóng biển. Xem xét vấn đề xấp xỉ hóa hàm truyền của hệ dây – thiết bị và<br />
khảo sát tác động của sóng biển đến độ sâu hoạt động của thiết bị trong miền thời<br />
gian. Phần cuối bài báo tiến hành mô phỏng sóng biển và đánh giá tác động của<br />
sóng biển đến sự dao động của thiết bị theo phương thẳng đứng đối với một hệ dây<br />
– thiết bị cụ thể. Các kết quả của bài báo có thể được sử dụng khi thiết kế chế tạo<br />
các thiết bị thám hiểm dưới nước được lai dắt bằng dây đặc biệt là khi xây dựng các<br />
bộ điều chỉnh ổn định độ sâu hay bộ giảm chấn gắn trên thiết bị thám hiểm, cũng<br />
như việc thiết kế các thiết bị chuyên dụng khác.<br />
Từ khóa: Thiết bị thám hiểm dưới nước, Hàm truyền, Mô hình hóa sóng biển, Đối tượng có tham số phân bố,<br />
Xấp xỉ hóa hàm truyền, Mật độ phổ sóng biển.<br />
<br />
Nhận bài ngày 31 tháng 3 năm 2016<br />
Hoàn thiện ngày 14 tháng 4 năm 2016<br />
Chấp nhận đăng ngày 20 tháng 4 năm 2016<br />
<br />
Địa chỉ: 1Học viện Kỹ thuật quân sự- 236 Hoàng Quốc Việt Bắc Từ Liêm Hà Nội.<br />
2<br />
Đại học Đồng Nai – Số 4 Khu phố 3 Lê Quý Đôn, Biên Hòa, Đồng Nai.<br />
*<br />
Email: npdangdtys@yahoo.com.vn<br />
<br />
<br />
<br />
<br />
86 N.P. Dang, P.T. Thanh, T.X. Tinh, D.S. Luat, “A study on… of towed underwater vehicle.”<br />