intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng An ninh mạng (Network security): Mã đối xứng hiện đại - Mã khối

Chia sẻ: Tại Tâm | Ngày: | Loại File: PDF | Số trang:33

138
lượt xem
13
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chương này giới thiệu về mã đối xứng hiện đại - Mã khối. Những nội dung chính được đề cập đến trong chương này gồm: Mã khối (Block Cipher), mạng SPN, mã TinyDES, các vòng của TinyDES, khả năng chống phá mã known-plaintext của TinyDES,... Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Bài giảng An ninh mạng (Network security): Mã đối xứng hiện đại - Mã khối

• Mã khối (Block Cipher)<br /> • Mã khối an toàn lý tưởng<br /> Phép toán XOR có một hạn chế là chỉ cần biết một cặp khối<br /> bản rõ và bản mã, người ta có thể dễ dàng suy ra được<br /> khóa và dùng khóa đó để giải các khối bản mã khác<br /> (known- plaintext attack).<br /> Xét lại ví dụ đầu chương: Bản rõ: 1111 0000 0011<br /> Khóa: 0101 0101 0101<br /> Bản mã: 1010 0101 0110<br /> <br /> Nếu biết bản mã<br /> c0 = 1010<br /> Có bản rõ tương ứng là<br /> p0 = 1111<br /> Thì có thể dễ dàng suy ra khóa là<br /> k = 0101.<br /> Nói một cách tổng quát, nếu giữa bản rõ P và bản mã C có mối<br /> liên hệ toán học thì việc biết một số cặp bản rõ-bản mã giúp ta<br /> có thể tính được khóa K. Do đó để chống phá mã trong trường<br /> hợp known-plaintext hay choosen-plaintext, chỉ có thể là làm<br /> cho P và C không có mối liên hệ toán học. Điều này chỉ có thể<br /> thực hiện được nếu ta lập một bản tra cứu ngẫu nhiên giữa bản<br /> rõ và bản mã.<br /> <br /> Ví dụ:<br /> <br /> Lúc này khóa là toàn bộ bảng trên. Người gởi cũng như người<br /> nhận phải biết toàn bộ bảng trên để mã hóa và giải mã. Đối với<br /> người phá mã, nếu biết một số cặp bản rõ - bản mã thì cũng chỉ<br /> biết được một phần của bảng tra cứu trên. Do đó không suy ra<br /> được bản rõ cho các bản mã còn lại. Hay nói cách khác, muốn<br /> phá mã thì phải biết được tất cả các cặp bản rõ và bản mã. Nếu<br /> chọn kích thước của khối là 64 bít thì số dòng của bảng khóa là<br /> 264, một con số rất lớn (và có khoảng 264! bảng khóa như vậy).<br /> Lúc này việc nắm tất cả các cặp bản rõ-bản mã của bảng khóa<br /> là điều không thể đối với người phá mã. Trường hợp này ta gọi<br /> là mã khối an toàn lý tưởng.<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2