intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Lý thuyết xác suất và thống kê toán - Chương 1: Khái niệm cơ bản của lý thuyết xác suất

Chia sẻ: Giang Hạ Vân | Ngày: | Loại File: PDF | Số trang:69

31
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Lý thuyết xác suất và thống kê toán - Chương 1: Khái niệm cơ bản của lý thuyết xác suất. Chương này cung cấp cho học viên những kiến thức về: quy tắc cộng, quy tắc nhân, chỉnh hợp lặp, chỉnh hợp không lặp, hoán vị, tổ hợp; phép thử và biến cố, các loại biến cố, mối quan hệ và các phép toán giữa các biến cố, tính chất của các phép toán trên biến cố;... Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Bài giảng Lý thuyết xác suất và thống kê toán - Chương 1: Khái niệm cơ bản của lý thuyết xác suất

  1. Bài giảng LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Chương 1. KHÁI NIỆM CƠ BẢN CỦA LÝ THUYẾT XÁC SUẤT Thạc sĩ Nguyễn Công Nhựt Kênh video https://www.youtube.com/c/Toanchobacdaihoc Ngày 17 tháng 8 năm 2021 Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 1 / 69
  2. LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN Hướng dẫn cách học - chi tiết cách đánh giá môn học Tài liệu, video bài giảng được đưa lên elearning hàng tuần. Sinh viên tải về, in ra và mang theo khi học. Điểm tổng kết môn học được đánh giá xuyên suốt quá trình học Điểm quá trình: 20% Kiểm tra giữa kỳ: 20% Thi cuối kỳ: 60% Cán bộ giảng dạy Thạc sĩ Nguyễn Công Nhựt ĐT: 0933373432 Email: ncnhut@ntt.edu.vn Zalo: 0378910071 Facebook: https://www.facebook.com/congnhut.nguyen/ Blog: https://nguyennhutblog.wordpress.com/ Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 2 / 69
  3. Content 1 KHÁI NIỆM CƠ BẢN VỀ LÝ THUYẾT XÁC SUẤT Giải tích tổ hợp Biến cố và mối quan hệ giữa các biến cố Định nghĩa xác suất Một số công thức tính xác suất 2 BIẾN NGẪU NHIÊN 3 MỘT SỐ PHÂN PHỐI XÁC SUẤT THÔNG DỤNG 4 LÝ THUYẾT MẪU 5 ƯỚC LƯỢNG THAM SỐ THỐNG KÊ 6 KIỂM ĐỊNH GIẢ THUYẾT CHO MỘT THAM SỐ THỐNG KÊ 7 HỒI QUY VÀ TƯƠNG QUAN 8 THỐNG KÊ MÔ TẢ Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 3 / 69
  4. CHƯƠNG 1. KHÁI NIỆM CƠ BẢN VỀ LÝ THUYẾT XÁC SUẤT 1-1 Giải tích tổ hợp 1-2 Biến cố và mối quan hệ giữa các biến cố 1-3 Định nghĩa xác suất 1-4 Một số công thức tính xác suất Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 4 / 69
  5. 1.1 GIẢI TÍCH TỔ HỢP 1. Quy tắc cộng 2. Quy tắc nhân 3. Chỉnh hợp lặp 4. Chỉnh hợp không lặp 5. Hoán vị 6. Tổ hợp Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 5 / 69
  6. 1.1.1 Quy tắc cộng Một công việc có thể thực hiện theo k phương án độc lập Phương án thứ nhất có n1 cách thực hiện. Phương án thứ hai có n2 cách thực hiện. ··· Phương án thứ k có nk cách thực hiện. Khi đó, số cách để hoàn thành công việc này là n1 + n2 + · · · + nk Ví dụ 1. Từ thành phố A đến thành phố B có thể đi bằng một trong 3 phương tiện: máy bay, tàu hỏa, ôtô. Trong một ngày có 10 chuyến bay, 20 chuyến tàu hỏa và 30 chuyến ôtô khởi hành từ A đến B. Hỏi có bao nhiêu cách đi từ A đến B trong một ngày? Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 6 / 69
  7. 1.1.2 Quy tắc nhân Một công việc A phải thực hiện thông qua k giai đoạn có mối liên hệ với nhau. Giai đoạn 1 có n1 cách thực hiện. Giai đoạn 2 có n2 cách thực hiện. Giai đoạn k có nk cách thực hiện. Khi đó, số cách để hoàn thành công việc A là n1 × n2 × · · · × nk Ví dụ 2. Từ A đến B có 2 con đường, từ B đến C có 3 con đường. 1 Có bao nhiêu cách đi từ A qua B rồi đến C? 2 Người ta mở thêm 2 con đường đi trực tiếp từ A đến C, hỏi khi đó có bao nhiêu cách đi từ A đến C. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 7 / 69
  8. 1.1.3 Chỉnh hợp lặp Cho tập hợp A gồm n phần tử. Một bộ có thứ tự gồm k phần tử lấy từ n phần tử của A, các phần tử có thể được lấy lặp lại, được gọi là một chỉnh hợp lặp chập k của n phần tử. Ví dụ 3. Tập A = {a , b , c } có các chỉnh hợp lặp chập 2 là: aa, bb, cc, ab, ba, ac, ca, bc, cb. Số chỉnh hợp lặp chập k của n phần tử, kí hiệu Bnk và được tính theo công thức Bnk = n k . Ví dụ 4. Có bao nhiêu cách sắp xếp 5 lớp học vào 3 hội trường lớn? Một cách sắp xếp là một chỉnh hợp lặp chập 5 của 3 phần tử. Tổng số cách là B35 = 35 = 243 Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 8 / 69
  9. 1.1.4 Chỉnh hợp Chỉnh hợp Cho tập hợp A gồm n phần tử. Một bộ có thứ tự gồm k phần tử phân biệt lấy từ n phần tử của A được gọi là một chỉnh hợp chập k của n phần tử. Ví dụ 5. Tập A = {a , b , c } có các chỉnh hợp chập 2 là: ab, ba, ac, ca, bc, cb. Số chỉnh hợp chập k của n phần tử, kí hiệu Akn và được tính theo công thức Akn = n (n − 1)...(n − k + 1) = (n − n! k )! Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 9 / 69
  10. 1.1.5 Hoán vị Hoán vị Cho tập hợp A có n phần tử. Một dãy gồm tất cả các phần tử của A xếp theo một thứ tự nào đó được gọi là một hoán vị của n phần tử này. Ví dụ 6. Tập A = {a , b , c } có các hoán vị là: abc, acb, bac, bca, cab, cba. Số hoán vị của n phần tử, kí hiệu Pn và được tính theo công thức Pn = n ! Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 10 / 69
  11. 1.1.6 Tổ hợp Tổ hợp Cho tập hợp A gồm n phần tử. Một bộ không thứ tự (một tập con) k phần tử lấy từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử. Ví dụ 7. Tập A = {a , b , c } có các tổ hợp chập 2 là: ab, ac, bc. Số tổ hợp chập k của n phần tử, kí hiệu Cnk và được tính theo công thức Cnk = Akn! n! k = k ! (n − k ) ! Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 11 / 69
  12. 1.1.6 Tổ hợp Ví dụ 8. Có 5 mẫu máu cần xét nghiệm nhưng chỉ có đủ hóa chất để xét nghiệm cho 3 mẫu. Hỏi có bao nhiêu cách thực hiện? Giải. Số cách xét nghiệm chính là số cách chọn 3 mẫu máu (không kể thứ tự) từ 5 mẫu máu hay số tổ hợp chập 3 của 5 phần tử. Số cách thực hiện C53 = 10 Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 12 / 69
  13. 1.1.6 Tổ hợp Ví dụ 9. Một lớp học có 50 sinh viên. Hỏi có bao nhiêu cách chọn ra 3 sinh viên để: 1 Lập một ban cán sự gồm 1 lớp trưởng, 1 lớp phó và 1 thủ quỹ? 2 Lập một nhóm tham dự hội nghị sinh viên toàn trường? (vai trò của các thành viên trong nhóm như nhau). Giải. 1) Mỗi kết quả chọn ra 1 lớp trưởng, 1 lớp phó và 1 thủ quỹ từ 50 sinh viên tương ứng với một cách chọn một bộ có thứ tự 3 phần tử từ 50 phần tử hay chính là một chỉnh hợp chập 3 của 50 phần tử. Vậy số kết quả có thể xảy ra là A350 2) C503 Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 13 / 69
  14. Xem bài giảng tại kênh Youtube https://www.youtube.com/c/Toanchobacdaihoc
  15. 1.2 BIẾN CỐ VÀ MỐI QUAN HỆ GIỮA CÁC BIẾN CỐ 1. Phép thử và biến cố 2. Các loại biến cố 3. Mối quan hệ và các phép toán giữa các biến cố 4. Tính chất của các phép toán trên biến cố Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 15 / 69
  16. 1.2.1 Phép thử và biến cố Phép thử Phép thử là một khái niệm cơ bản của xác suất, nó không được định nghĩa một cách chính xác. Ta hiểu phép thử là một thí nghiệm hay một hành động để quan sát một hiện tượng ngẫu nhiên nào đó. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 16 / 69
  17. 1.2.1 Phép thử và biến cố Biến cố Hiện tượng ngẫu nhiên ta quan sát trong phép thử được gọi là biến cố. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 17 / 69
  18. 1.2.1 Phép thử và biến cố Mỗi biến cố chính là một kết quả (kết cục) của phép thử. Trong một phép thử có thể có nhiều kết quả xảy ra. Kết quả đơn giản nhất gọi là các biến cố sơ cấp, Tập hợp tất cả các biến cố sơ cấp được gọi là không gian mẫu hay không gian các biến cố sơ cấp. Kí hiệu không gian mẫu Ω Biến cố là một tập con của không gian mẫu. Kí hiệu các biến cố sơ cấp A, B , C , ..., A1 , A2 , ... Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 18 / 69
  19. 1.2.1 Phép thử và biến cố 1 Gieo một đồng xu một lần, không gian mẫu là Ω = {S , N } 2 Gieo một đồng xu hai lần, không gian mẫu là Ω = {SS , SN , NS , NN } 3 Gieo một con xúc xắc, không gian mẫu là Ω = {1, 2, 3, 4, 5, 6} Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 19 / 69
  20. 1.2.2 Các loại biến cố Biến cố chắc chắn (Ω): Là biến cố nhất định xảy ra khi thực hiện phép thử. Biến cố không thể (∅): Là biến cố nhất định không xảy ra khi thực hiện phép thử. Biến cố ngẫu nhiên: Là biến cố có thể xảy ra hoặc không xảy ra khi thực hiện phép thử. Ví dụ 10. Gieo một con xúc xắc, biến cố “xuất hiện mặt có từ 1 đến 6 chấm” là biến cố chắc chắn; biến cố “xuất hiện mặt 7 chấm” là biến cố không thể; biến cố “xuất hiện mặt 5 chấm” là biến cố ngẫu nhiên. Nguyen Cong Nhut Lý thuyết xác suất và thống kê toán Ngày 17 tháng 8 năm 2021 20 / 69
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2