Bài giảng toán 12 - Hệ phương trình đại số
lượt xem 162
download
Đây là bài giảng đại sô lớp 12 về hệ phương trình đại số gửi đến các bạn độc giả tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng toán 12 - Hệ phương trình đại số
- Chuyeân ñeà 2 : HEÄ PHÖÔNG TRÌNH ÑAÏI SOÁ TOÙM TAÉT GIAÙO KHOA I. Heä phöông trình baäc nhaát nhieàu aån 1. Heä phöông trình baäc nhaát hai aån ⎧a1 x + b1 y = c1 a. Daïng : (1) ⎨ ⎩a2 x + b2 y = c2 Caùch giaûi ñaõ bieát: Pheùp theá, pheùp coäng ... b. Giaûi vaø bieän luaän phöông trình : Quy trình giaûi vaø bieän luaän Böôùc 1: Tính caùc ñònh thöùc : a1 b1 (goïi laø ñònh thöùc cuûa heä) • D= = a1b2 − a 2 b1 a 2 b2 c1 b1 (goïi laø ñònh thöùc cuûa x) Dx = = c1b2 − c 2 b1 • c2 b2 a1 c1 (goïi laø ñònh thöùc cuûa y) Dy = = a1c 2 − a 2 c1 • a2 c2 Böôùc 2: Bieän luaän ⎧ Dx ⎪x = D ⎪ Neáu D ≠ 0 thì heä coù nghieäm duy nhaát ⎨ • ⎪ y = Dy ⎪ ⎩ D Neáu D = 0 vaø D x ≠ 0 hoaëc D y ≠ 0 thì heä voâ nghieäm • Neáu D = Dx = Dy = 0 thì heä coù voâ soá nghieäm hoaëc voâ nghieäm • YÙ nghóa hình hoïc: Giaû söû (d1) laø ñöôøng thaúng a1x + b1y = c1 (d2) laø ñöôøng thaúng a2x + b2y = c2 Khi ñoù: 1. Heä (I) coù nghieäm duy nhaát ⇔ (d1) vaø (d2) caét nhau 2. Heä (I) voâ nghieäm ⇔ (d1) vaø (d2) song song vôùi nhau 3. Heä (I) coù voâ soá nghieäm ⇔ (d1) vaø (d2) truøng nhau AÙp duïng: ⎧5 x − 2 y = −9 Ví duï1: Giaûi heä phöông trình: ⎨ ⎩4 x + 3 y = 2 ⎧mx + y = m + 1 Ví duï 2: Giaûi vaø bieän luaän heä phöông trình : ⎨ ⎩ x + my = 2 ⎧mx + 2 y = 3 Ví duï 3: Cho heä phöông trình : ⎨ ⎩ x + my = 1 9
- Xaùc ñònh taát caû caùc giaù trò cuûa tham soá m ñeå heä coù nghieäm duy nhaát (x;y) thoûa x >1 vaø y > 0 ( − 2 < m < 0) ⎧mx + 4 y = m + 2 Ví duï 4: Vôùi giaù trò nguyeân naøo cuûa tham soá m heä phöông trình ⎨ coù nghieäm duy nhaát ⎩ x + my = m (x;y) vôùi x, y laø caùc soá nguyeân. ( m = −1 ∨ m = −3 ) II. Heä phöông trình baäc hai hai aån: 1. Heä goàm moät phöông trình baäc nhaát vaø moät phöông trình baäc hai hai aån: ⎧x + 2 y = 5 Ví duï : Giaûi heä: ⎨ 2 ⎩ x + 2 y − 2 xy = 5 2 Caùch giaûi: Giaûi baèng pheùp theá 2. Heä phöông trình ñoái xöùng : 1. Heä phöông trình ñoái xöùng loaïi I: a.Ñònh nghóa: Ñoù laø heä chöùa hai aån x,y maø khi ta thay ñoåi vai troø x,y cho nhau thì heä phöông trình khoâng thay ñoåi. b.Caùch giaûi: Böôùc 1: Ñaët x+y=S vaø xy=P vôùi S 2 ≥ 4 P ta ñöa heä veà heä môùi chöùa hai aån S,P. Böôùc 2: Giaûi heä môùi tìm S,P . Choïn S,P thoaû maõn S 2 ≥ 4 P . Böôùc 3: Vôùi S,P tìm ñöôïc thì x,y laø nghieäm cuûa phöông trình : X 2 − SX + P = 0 ( ñònh lyù Vieùt ñaûo ). Chuù yù: Do tính ñoái xöùng, cho neân neáu (x0;y0) laø nghieäm cuûa heä thì (y0;x0) cuõng laø nghieäm cuûa heä AÙp duïng: Ví du 1ï: Giaûi caùc heä phöông trình sau : ⎧ x + y + xy = −7 ⎧ xy + x + y = 11 ⎧ x 2 + xy + y 2 = 4 ⎧ x 2 + y 2 = 13 1) ⎨ 2) ⎨ 2 3) ⎨ 2 4) ⎨ ⎩ x + y − 3 x − 3 y = 16 2 ⎩ xy + x + y = 2 ⎩ x y + xy = 30 ⎩3( x + y ) + 2 xy + 9 = 0 2 ⎧ x+ y =4 ⎧x y + y x = 6 ⎧ x 2 y + xy 2 = 30 ⎧ x 4 + y 4 = 34 ⎪ ⎪ ⎪ 5) ⎨ 3 6) ⎨ 7) ⎨ 8) ⎨ ⎩x + y = 2 ⎪ x + y 3 = 35 ⎪ x 2 y + xy 2 = 20 ⎪ x + y − xy = 4 ⎩ ⎩ ⎩ 1) (0;2); (2;0) 2) (2; −3),(−3;2),(1 + 10;1 − 10),(1 − 10;1 + 10) 3) (1;5),(5;1),(2;3),(3;2) 10 10 10 10 4) (3; −2),(−2;3),(−2 + 5) (2;3);(3;2) 6) (1;4),(4;1) ; −2 − ),(−2 − ; −2 + ) 2 2 2 2 7) (4;4) 8) (1 − 2;1 + 2 ),(1 + 2;1 − 2 ) ⎧ x + y =1 ⎪ Ví duï2 : Vôùi giaù trò naøo cuûa m thì heä phöông trình sau coù nghieäm: ⎨ ⎪ x x + y y = 1 − 3m ⎩ 10
- 2. Heä phöông trình ñoái xöùng loaïi II: a.Ñònh nghóa: Ñoù laø heä chöùa hai aån x,y maø khi ta thay ñoåi vai troø x,y cho nhau thì phöông trình naày trôû thaønh phöông trình kia cuûa heä. b. Caùch giaûi: Tröø veá vôùi veá hai phöông trình vaø bieán ñoåi veà daïng phöông trình tích soá. • Keát hôïp moät phöông trình tích soá vôùi moät phöông trình cuûa heä ñeå suy ra nghieäm cuûa heä . • AÙp duïng: Ví duï: Giaûi caùc heä phöông trình sau: ⎧2 x 2 + y = 3y 2 − 2 ⎧ y 2 = x 3 − 3x 2 + 2 x ⎧2 x 2 + xy = 3 x ⎪ ⎪ ⎪ 1) ⎨ 2 2) ⎨ 2 3) ⎨ 2 ⎪2 y + x = 3 x − 2 ⎪ x = y − 3y + 2 y 2 3 2 ⎪2 y + xy = 3 y ⎩ ⎩ ⎩ 1 ⎧ y2 + 2 ⎧ ⎪3 x + y = 3y = ⎪ x2 ⎪ ⎪ x2 5) ⎨ 4) ⎨ 1 ⎪3x = x + 2 2 ⎪3y + x = y2 ⎪ ⎪ ⎩ y2 ⎩ III. Heä phöông trình ñaúng caáp baäc hai: ⎧a1 x 2 + b1 xy + c1 y 2 = d1 ⎪ a. Daïng : ⎨2 2 ⎪a2 x + b2 xy + c2 y = d2 ⎩ b. Caùch giaûi: x x y Ñaët aån phuï = t hoaëc = t . Giaû söû ta choïn caùch ñaët = t . y y x Khi ñoù ta coù theå tieán haønh caùch giaûi nhö sau: Böôùc 1: Kieåm tra xem (x,0) coù phaûi laø nghieäm cuûa heä hay khoâng ? Böôùc 2: Vôùi y ≠ 0 ta ñaët x = ty. Thay vaøo heä ta ñöôïc heä môùi chöùa 2 aån t,y .Töø 2 phöông trình ta khöû y ñeå ñöôïc 1 phöông trình chöùa t . Böôùc 3: Giaûi phöông trình tìm t roài suy ra x,y. AÙp duïng: Ví duï: Giaûi caùc heä phöông trình sau: ⎪3 x + 2 xy + y = 11 ⎧2 x 3 + 3 x 2 y = 5 ⎧2 2 ⎧2 ⎪6 x − xy − 2 y = 56 ⎪ 2 1) ⎨ 2 2) ⎨ 2 3) ⎨ 3 ⎪ x + 2 xy + 5y = 25 ⎪ y + 6 xy = 7 2 2 ⎪5 x − xy − y 2 = 49 ⎩ ⎩ ⎩ IV. Caùc heä phöông trình khaùc: Ta coù theå söû duïng caùc phöông phaùp sau: a. Ñaët aån phuï: Ví duï : Giaûi caùc heä phöông trình : ⎧ xy − x + y = −3 ⎧ x2 − y2 + x − y = 5 ⎧ x 2 + y 2 − x − y = 12 ⎪ 1) ⎨ 2 2) ⎨ 3) ⎨ 3 ⎩ x + y − x + y + xy = 6 ⎩ x( x − 1) y ( y − 1) = 36 ⎪ x − x y − xy + y = 6 2 2 3 2 ⎩ 11
- b. Söû duïng pheùp coäng vaø pheùp theá: ⎧2 ⎪x + y − 10x = 0 2 Ví duï: Giaûi heä phöông trình : ⎨ 2 ⎪x + y + 4x − 2 y − 20 = 0 2 ⎩ c. Bieán ñoåi veà tích soá: Ví duï : Giaûi caùc heä phöông trình sau: ⎧ 1 1 ⎪x − x = y − y ⎧2 ⎧3 ⎪x + x = y + y ⎪x + 7 x = y + 7 y 2 3 1) ⎨ 2 2) ⎨ 2 3) ⎨ ⎪ x + y 2 = 3( x + y ) ⎪x + y 2 = x + y + 2 ⎪2 y = x 3 + 1 ⎩ ⎩ ⎩ --------------------------Heát------------------------ 12
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Công nghệ 12 bài 25: Máy điện xoay chiều ba pha - Máy biến áp ba pha
19 p | 544 | 67
-
Bài giảng Giải tích 12 chương 1 bài 2: Cực trị hàm số
20 p | 429 | 41
-
Bài giảng Hình học 12 chương 3 bài 1: Hệ trục tọa độ trong không gian
19 p | 247 | 27
-
Bài giảng Giải tích 12 chương 4 bài 4: Phương trình bậc hai với hệ số thực
11 p | 188 | 20
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 23: Hệ phương trình (Phần 1)
1 p | 118 | 19
-
Luyện thi Đại học Kit 1 - Môn Toán: Quan hệ vuông góc (Bài tập tự luyện)
1 p | 133 | 17
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 26: Hệ phương trình (Phần 4)
1 p | 99 | 15
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 27: Hệ phương trình Phần 5
1 p | 79 | 10
-
Luyện thi Đại học Kit 1 - Môn Toán: Quan hệ vuông góc Phần 1 (Tài liệu bài giảng)
1 p | 102 | 8
-
Luyện thi Đại học Kit 1 - Môn Toán: Quan hệ vuông góc Phần 02 (Tài liệu bài giảng)
1 p | 91 | 8
-
Luyện thi Đại học Kit 1 - Môn Toán - Bài 27: Hệ phương trình Phần 5 (Tài liệu bài giảng)
1 p | 50 | 7
-
Luyện thi Đại học Kit 1 - Môn Toán: Quan hệ vuông góc Phần 03 (Tài liệu bài giảng)
1 p | 100 | 6
-
Toán 12: Chứng minh quan hệ vuông góc-P1 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
2 p | 90 | 6
-
Toán 12: Hệ phương trình mũ và Logarit-P1 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
1 p | 78 | 6
-
Toán 12: Chứng minh quan hệ vuông góc-P2 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
1 p | 79 | 5
-
Toán 12: Hệ phương trình mũ và Logarit-P2 (Tài liệu bài giảng) - GV. Lê Bá Trần Phương
1 p | 73 | 4
-
Bài giảng Toán 12: Hệ toạ độ trong không gian
19 p | 70 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn