Bài giảng Trí tuệ nhân tạo: Bài 8 - Trương Xuân Nam
lượt xem 9
download
Bài giảng Trí tuệ nhân tạo: Bài 8 Trò chơi đối kháng không xác định cung cấp cho người học những kiến thức như: Khái niệm không xác định; Lượng giá Minimax; Thuật toán Alpha-Beta; Các biến thể và phát triển; Rủi ro và thực tế. Mời các bạn cùng tham khảo!
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Trí tuệ nhân tạo: Bài 8 - Trương Xuân Nam
- TRÍ TUỆ NHÂN TẠO Bài 8: Trò chơi đối kháng không xác định
- Nội dung 1. Khái niệm không xác định 2. Lượng giá Minimax 3. Thuật toán Alpha-Beta 4. Các biến thể và phát triển 5. Rủi ro và thực tế Trương Xuân Nam - Khoa CNTT 2
- Phần 1 Khái niệm không xác định TRƯƠNG XUÂN NAM 3
- Phân loại trò chơi Chơi theo Thông tin lượt rõ ràng Chơi tự do Hai phía Trò chơi Thông tin tổng quát mờ Nhiều phía Trương Xuân Nam - Khoa CNTT 4
- Phân loại chiến lược chơi Số hình trạng ít: Tính được trạng thái thắng- Số hình trạng nhiều – thua KHÔNG tách được thành trò chơi con: Không tính toán được (do quá nhiều), Số hình trạng nhiều – sử dụng máy tính để tính tách được thành các trò toán các bước đi chơi con: Tính trạng thái thắng thua bằng đồ thị tổng Trương Xuân Nam - Khoa CNTT 5
- Khái niệm không xác định Trò chơi đối kháng: Hai người chơi Quyền lợi đối lập nhau (zero-sum game) Trò chơi không xác định: Số hình trạng quá nhiều, không thể tính toán kết cục thắng- thua Không có định nghĩa rõ ràng việc thắng-thua Trương Xuân Nam - Khoa CNTT 6
- Phần 2 Lượng giá Minimax TRƯƠNG XUÂN NAM 7
- Chiến lược chung Sử dụng công suất của máy tính mô phỏng các diễn biến có thể có của trò chơi Giới hạn chiều sâu để tránh bùng nổ tổ hợp Đưa ra một đánh giá (tương đối) cho hình trạng “cuối” Xây dựng chiến lược để “ép” đối phương đi vào hình trạng cuối có lợi cho máy tính Trương Xuân Nam - Khoa CNTT 8
- Lượng giá Minimax Gọi trạng thái hiện tại của trò chơi là S Hàm E(S) trả về số điểm đánh giá lợi thế của bên đi trước so với bên đi sau đối với S Diến biến trận đấu: Ở lượt đầu tiên: người thứ nhất cố gắng chọn nước đi có E(S) lớn nhất (max) Ở lượt thứ hai: người thứ hai cố gắng chọn nước đi để E(S) nhỏ nhất (min) …. Trương Xuân Nam - Khoa CNTT 9
- Lượng giá Minimax Chiến lược chung: Tối thiếu hóa lựa chọn tốt nhất của đối phương (mini-max) 4 3 2 4 7 8 3 2 10 4 5 Trương Xuân Nam - Khoa CNTT 10
- Lượng giá Minimax function MAX–VALUE(state) return a value if state as TERMINAL return EVALUTE(state) V = -∞ for s in SUCCESSORS (state) do V = MAX(V, MIN–VALUE(s)) return V function MIN–VALUE(state) return a value if state as TERMINAL return EVALUTE(state) V = +∞ for s in SUCCESSORS (state) do V = MIN(V, MAX–VALUE(s)) return V function MINIMAX(state) return an action V = MAX–VALUE(state) return action ứng với giá trị V Trương Xuân Nam - Khoa CNTT 11
- Phần 3 Thuật toán Alpha-Beta TRƯƠNG XUÂN NAM 12
- Thuật toán Alpha-Beta (1/3) Trương Xuân Nam - Khoa CNTT 13
- Thuật toán Alpha-Beta (2/3) state = Trạng thái hiện thời trong trò chơi α = Giá trị của giải pháp tốt nhất cho MAX dọc theo đường đi tới state β = Giá trị của giải pháp tốt nhất cho MIN dọc theo đường đi tới state function MAX–VALUE(state, α, β) return a value if state as TERMINAL return EVALUTE (state) V = -∞ for s in SUCCESSORS (state) do V = MAX(V, MIN–VALUE(s, α, β)) if V >= β return V α = MAX(α, V) return V Trương Xuân Nam - Khoa CNTT 14
- Thuật toán Alpha-Beta (2/3) function MIN–VALUE(state, α, β) return a value if state as TERMINAL return EVALUTE (state) V = +∞ for s in SUCCESSORS (state) do V = MIN(V, MAX–VALUE(s, α, β)) if V
- Hoạt động của alpha-beta Nguyên tắc: Khi đã tìm được nước đi m điểm Phía MAX: Chỉ tìm những nước đi tốt hơn (từ m+1 trở lên) Phía MIN: Chỉ tìm nước đi tệ hơn (từ m-1 trở xuống) Trương Xuân Nam - Khoa CNTT 16
- Hoạt động của alpha-beta Trương Xuân Nam - Khoa CNTT 17
- Hoạt động của alpha-beta Trương Xuân Nam - Khoa CNTT 18
- Thuật toán Alpha-Beta chuẩn Thuật toán có thể được hiệu chỉnh ngắn gọn hơn như sau function alphabeta(state, depth, α, β) if depth=0 return EVALUTE (state) if state as TERMINAL return EVALUTE (state) for s in SUCCESSORS (state) do α = max(α, -alphabeta(s, depth-1, -β, -α)) if β ≤ α break return α function α-β(state) return an action V = alphabeta(state, depth, -∞, +∞) return action ứng với giá trị V Trương Xuân Nam - Khoa CNTT 19
- Đánh giá Alpha-Beta Thuật toán Minimax đòi hỏi phải xét toàn bộ cây trò chơi (giới hạn độ sâu d): bd Thuật toán Alpha-Beta: Trường hợp tốt nhất: bd/2 Trường hợp trung bình: b3d/4 Trường hợp kém nhất = Minimax Kết quả của 2 thuật toán là như nhau Trương Xuân Nam - Khoa CNTT 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Trí tuệ nhân tạo - Nguyễn Ngọc Hiếu
236 p | 156 | 23
-
Bài giảng Trí tuệ nhân tạo - Bài 1, 2: Giới thiệu về Trí tuệ nhân tạo - Agen thông minh
26 p | 187 | 12
-
Bài giảng Trí tuệ nhân tạo: Giới thiệu trí tuệ nhân tạo - TS. Đào Anh Nam
64 p | 127 | 10
-
Bài giảng Trí tuệ nhân tạo: Giới thiệu về trí tuệ nhân tạo - Nguyễn Nhật Quang
21 p | 139 | 9
-
Bài giảng Trí tuệ nhân tạo: Chương 1 - Lý Anh Tuấn
31 p | 82 | 7
-
Bài giảng Trí tuệ nhân tạo - ĐH Nha Trang
137 p | 46 | 7
-
Bài giảng Trí tuệ nhân tạo: Suy diễn trong logic vị từ - Trường Đại học Thủy Lợi
26 p | 74 | 6
-
Bài giảng Trí tuệ nhân tạo: Logic vị từ - Trường Đại học Thủy Lợi
18 p | 45 | 6
-
Bài giảng Trí tuệ nhân tạo: Giới thiệu và Tác nhân thông minh - Trường Đại học Thủy Lợi
31 p | 57 | 6
-
Bài giảng Trí tuệ nhân tạo: Logic - Trường Đại học Thủy Lợi
60 p | 44 | 5
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 8 – GV. Nguyễn Văn Hòa
36 p | 7 | 2
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 1 – GV. Nguyễn Văn Hòa
37 p | 9 | 2
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 2 – GV. Nguyễn Văn Hòa
41 p | 2 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 3 – GV. Nguyễn Văn Hòa
36 p | 2 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 5 – GV. Nguyễn Văn Hòa
34 p | 3 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 4 – GV. Nguyễn Văn Hòa
27 p | 2 | 1
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 6 – GV. Nguyễn Văn Hòa
30 p | 3 | 0
-
Bài giảng Trí tuệ nhân tạo (Artificial Intelligence): Chương 7 – GV. Nguyễn Văn Hòa
41 p | 2 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn