intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

BÀI TẬP VỀ TIẾP TUYẾN

Chia sẻ: Đỗ Thị Bích Phương | Ngày: | Loại File: DOC | Số trang:2

211
lượt xem
24
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo môn toán về phần Phân loại - Phương pháp giải các bài toán về tiếp tuyến với đồ thị hàm số; gồm các ví dụ và bài giải để bạn học tập và kiểm tra. Mời các bạn tham khảo tài liệu để nắm vững thêm nhiều...

Chủ đề:
Lưu

Nội dung Text: BÀI TẬP VỀ TIẾP TUYẾN

  1. BÀI TẬP VỀ TIẾP TUYẾN Bài 1. x4 5 1) Cho hàm số y = − 3 x 2 + . Cho điểm M thuộc (C) có hoành độ x M = a. Viết phương trình tiếp 2 2 tuyến của (C) tại M, với giá trị nào của a thì ti ếp tuyến c ủa (C) t ại M c ắt (C) t ại hai đi ểm phân bi ệt khác M. x 2) Cho hàm số y = (C). Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm x −1 đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. x+2 3) Cho hµm sè y = (C). Cho ®iÓm A(0;a) . X¸c ®Þnh a để tõ A kÎ ®îc hai tiÕp tuyÕn tíi (C) x −1 sao cho hai tiÕp ®iÓm t¬ng øng n»m vÒ hai phÝa trôc ox. Bài 2. 2x − 3 1) Cho hàm số y = có đồ thị (C). Tìm trên (C) những điểm M sao cho ti ếp tuyến tại M c ủa (C) c ắt x−2 hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất . 2 3 5 2) Cho hàm số y = − x + ( m − 1) x + (3m − 2) x − có đồ thị (C m ), m là tham số. Tìm m để trên (Cm ) có 2 3 3 hai điểm phân biệt M 1 ( x1 ; y1 ), M 2 ( x2 ; y2 ) thỏa mãn x1.x2 > 0 và tiếp tuyến của (Cm ) tại mỗi điểm đó vuông góc với đường thẳng d : x − 3 y + 1 = 0. 2x − 1 3) Cho ham số y = ̀ . Viết phương trình tiếp tuyến của (C), biết khoảng cách từ đi ểm I(1;2) đ ến x −1 tiếp tuyến bằng 2 . Bài 3. x−3 1) Cho hµm sè y = cã ®å thÞ lµ (C). ViÕt ph¬ng tr×nh tiÕp tuyÕn cña ®å thÞ hµm sè, biÕt x +1 tiÕp tuyÕn ®ã c¾t trôc hoµnh t¹i A, c¾t trôc tung t¹i B sao cho OA = 4OB. 3x + 2 2) Cho hàm số y = có đồ thị (C). Gọi M là điểm bất kỳ trên (C). Tiếp tuyến của (C) t ại M c ắt các x+2 đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm c ận. Tìm t ọa đ ộ M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. x −1 3) Cho hàm số: y = . Tìm những điểm M trên (C) sao cho tiếp tuyến với (C) tại M tạo v ới hai 2( x + 1) trục tọa độ một tam giác có trọng tâm nằm trên đường thẳng 4x + y = 0. Bài 4. 1) Cho hàm số y = x3 – 3x + 1 có đồ thị (C) và đường thẳng (d): y = mx + m + 3. Tìm m đ ể (d) c ắt (C) t ại M(-1; 3), N, P sao cho tiếp tuyến của (C) tại N và P vuông góc nhau. 2x − 3 2) Cho hàm số y = .Cho M là điểm bất kì trên ( C). Tiếp tuyến của (C) tại M cắt các đường tiệm x−2 cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. 2x + 3 3) Cho hàm số: y = . Tìm m để đường thẳng (d): y = 2x + m c ắt đồ thị (C ) tại hai đi ểm phân bi ệt x−2 sao cho tiếp tuyến của (C ) tại hai điểm đó song song với nhau.
  2. x 4) Cho hàm số y = . Tìm tọa độ điểm M thuộc (C), biết rằng tiếp tuyến của (C) tại M vuông góc với x −1 đường thẳng đi qua điểm M và điểm I(1; 1).
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2