Các giải pháp giảm nhiễu cho cảm biến đo lường quán tính ứng dụng trên robot hai bánh tự cân bằng
lượt xem 5
download
Nghiên cứu trình bày so sánh, đánh giá các giải pháp giảm nhiễu cho cảm biến gia tốc (Accelerometer) và cảm biến góc quay (Gyroscope) của khối đo lường quán tính (IMU). Kết quả giảm nhiễu thu được thông qua các kỹ thuật khác nhau ứng với các phương pháp xử lý số tín hiệu sẽ được thực hiện trên chip MPU6050.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các giải pháp giảm nhiễu cho cảm biến đo lường quán tính ứng dụng trên robot hai bánh tự cân bằng
- Dương Ngọc Pháp 225 Các giải pháp giảm nhiễu cho cảm biến đo lường quán tính ứng dụng trên robot hai bánh tự cân bằng Dương Ngọc Pháp Khoa Công nghệ Thông tin và Truyền thông - Đại học Đà Nẵng dnphap@sict.udn.vn Tóm tắt: Nghiên cứu trình bày so sánh, đánh giá các giải pháp giảm nhiễu cho cảm biến gia tốc (Accelerometer) và cảm biến góc quay (Gyroscope) của khối đo lường quán tính (IMU). Kết quả giảm nhiễu thu được thông qua các kỹ thuật khác nhau ứng với các phương pháp xử lý số tín hiệu sẽ được thực hiện trên chip MPU6050. Kit phát triển trên nền tảng Arduino sẽ được sử dụng để xử lý và mô phỏng trên mô hình robot hai bánh tự cân bằng. Từ các kết quả mô phỏng thu được sẽ tiến hành phân tích, đánh giá để làm căn cứ lựa chọn kỹ thuật giảm nhiễu phù hợp, từ đó thực hiện tiền xử lý cho các hệ thống ứng dụng cảm biến đo lường quán tính. Bên cạnh đó, nghiên cứu cũng sẽ đưa ra các đề xuất phát triển tiếp theo nhằm năng cao hiệu quả giảm nhiễu của hệ thống và xử lí đáp ứng thời gian thực. Từ khóa: khối đo lường quán tính, cảm biến gia tốc, con quay hồi chuyển. 1 Giới thiệu Thiết bị đo lường quán tính như Hình 1 được sử dụng ngày càng rộng rãi trong các ứng dụng khác nhau, đặc biệt trong các hệ thống vi cơ điện tử (MEMS) ứng dụng trong lĩnh vực hỗ trợ chăm sóc sức khỏe con người. Sự phát triển mạnh mẽ của các hệ thống MEMS đã góp phần thúc đẩy ứng dụng các thiết bị IMU trong nhiều lĩnh vực. Liên quan đến đặc điểm vật lý của cảm biến là các mạch điện tử và các thông số môi trường phức tạp nên giá trị cảm biến thu được trong quá trình đo đạc của IMU bị ảnh hưởng nghiêm trọng bởi nhiễu. Theo đó, việc giảm nhiễu là yêu cầu bắt buộc trong các hệ thống MEMS nhằm ước lượng tín hiệu cảm biến đảm bảo có giá trị tín hiệu đo được phản ánh chính xác hướng và góc nghiêng của thiết bị, đảm bảo cho các tiến trình xử lý tiếp theo. Hình 1. Khối đo lường quán tính (IMU) Các kỹ thuật ước lượng nhiễu cho cảm biến gia tốc và vận tốc góc trong thiết bị IMU chia thành các nhóm chính bao gồm: ước lượng dựa vào vận tốc góc (chỉ sử dụng Gyroscope);
- 226 KỶ YẾU HỘI THẢO KHOA HỌC QUỐC GIA CITA 2017 “CNTT VÀ ỨNG DỤNG TRONG CÁC LĨNH VỰC” sử dụng bộ lọc thông thấp; phương pháp tính toán truy hồi; sử dụng băng con (phân tích wavelet); thuật toán tối ưu hóa (Majorization Minimization) và sử dụng bộ xử lý chuyển động số (Digital Motion Processor - DMP). Việc so sánh, đánh giá các kỹ thuật ước lượng, giảm nhiễu cho tín hiệu cảm biến được thực hiện thông qua giản đồ tín hiệu đo đạc, đồng thời ứng dụng cụ thể trên mô hình robot hai bánh tự cân bằng để đánh giá kết quả thực tế. 2 Các giải pháp giảm nhiễu Theo các nhóm kỹ thuật giảm nhiễu chính cho tín hiệu cảm biến gia tốc và vận tốc góc, nghiên cứu tập trung so sánh các kỹ thuật giảm nhiễu bao gồm: bộ lọc thông thấp, bộ lọc Kalman, sử dụng các phép biến đổi wavelet, thuật toán tối ưu hóa và bộ xử lí chuyển động số. Việc sử dụng bộ lọc số thông thấp [1] được ứng dụng đầu tiên để giảm nhiễu cho tín hiệu cảm biến trong các hệ thống MEMS do đặc tính đơn giản của bộ lọc với phương trình làm mượt tín hiệu bậc một ở công thức (1). Tuy nhiên do tính đơn giản của bộ lọc nên thường gây khó khăn cho việc xác định biên của tín hiệu và nhiễu. t yi xi (1 - )yi với (1) RC t Trong đó: - xi : Giá trị cảm biến đo được; - yi 1 : Giá trị ước lượng trước đó; - yi : Giá trị ước lượng hiện tại; - : Hệ số tỷ lệ, có giá trị , được lựa chọn dựa trên điều chỉnh thực tế nên còn mang tính chủ quan. Trong nghiên cứu giá trị được chọn bằng 0,96. Thay vào đó, bộ lọc Kalman được ứng dụng để ước lượng dữ liệu cảm biến gia tốc dưới tác động của nhiễu [2]. Mô hình thực hiện bộ lọc Kalman gồm có hai phương trình như ở công thức (2): xk 1 X k G uk wk , và zk 1 H X k 1 vk 1 (2) Trong đó: - xk : Vector trạng thái tại thời điểm k; - uk : Vector điều khiển (tín hiệu đầu vào) tại thời điểm k; - zk : Đầu ra hệ thống (tín hiệu đo được) tại thời điểm k; - wk : Nhiễu tiến trình tại thời điểm k; - vk : Nhiễu đo đạc tại thời điểm k; - , G, H : Các ma trận hiệp phương; - X k 1 : Vector trạng thái ước lượng tại thời điểm k+1.
- Dương Ngọc Pháp 227 Trong vector nhiễu tiến trình và nhiễu đo lường, giá trị khởi tạo được chọn bao gồm Qk 102 và Rk 3 102 theo hệ thống thực tế. Tuy nhiên, nhược điểm của bộ lọc Kalman là khó xác định chính xác thông số nhiễu trong môi trường thực theo đặc tính thống kê của nhiễu, do đó bộ lọc Kalman mở rộng được sử dụng để thích nghi với sự thay đổi của môi trường. Tuy kết quả giảm nhiễu khá tốt nhưng vẫn còn hạn chế lớn liên quan đến độ phức tạp của bộ lọc và thời gian xử lý nên khó áp dụng vào các ứng dụng yêu cầu thời gian đáp ứng nhanh. Bên cạnh đó, việc mã hóa băng con nhằm tách nhiễu ra khỏi tín hiệu cảm biến cũng được thực hiện sử dụng các phép biến đổi trong miền wavelet. Kỹ thuật này dựa vào việc lựa chọn sóng con tương ứng để tính toán hàm tương quan với tín hiệu bị nhiễu, qua đó ước lượng tín hiệu thực. Tuy nhiên, việc lựa chọn sóng con cũng như mức ngưỡng để khử nhiễu cũng sẽ gây méo tín hiệu cảm biến nếu thành phần bị loại bỏ có cả tín hiệu cảm biến cần giữ lại. Phương pháp tiếp cận điều chỉnh căn cứ vào việc gắn kết trực tiếp từng phần (PDC) như được đề xuất ở [3] đã thay đổi các mức khử nhiễu khác nhau đối với từng khoảng tín hiệu, qua đó giảm sự méo ở tín hiệu cảm biến. Một phương pháp giảm nhiễu khác cũng được thực hiện dựa vào thuật toán tối ưu (LTV) [4] cũng được trình bày thể hiện ưu điểm cải thiện hiệu quả giảm nhiễu xấp xỉ 4-10% so với các thuật toán bộ lọc thông thấp bằng việc đánh giá thông qua tiêu chí tỷ số tín hiệu trên nhiễu (SNR) và mật độ phổ công suất (PSD). Ngoài ra, trong bản thân IMU còn hỗ trợ một bộ xử lý chuyển động số (DMP) bao gồm các khối xử lý số tín hiệu sử dụng các phép biến đổi ADC và làm mượt tín hiệu theo tài liệu kỹ thuật của nhà sản xuất [5]. Khối chức năng DMP được kích hoạt và cho phép thu được ở đầu ra giá trị cảm biến gia tốc và vận tốc góc theo nguyên tắc FIFO được tính toán theo bộ chia xác định. 3 Kết quả thực nghiệm Để thực hiện kết quả so sánh đánh giá, nghiên cứu sử dụng cảm biến IMU 6 trục (chứa trong IC MPU6050) bao gồm hai tham số đo lường là gia tốc kế 3 trục và vận tốc góc 3 trục. Mạch Arduino Nano được sử dụng để thu nhận giá trị cảm biến và thực hiện các thuật toán ước lượng giảm nhiễu. Kết quả đo đạc và ước lượng giảm nhiễu tham số cảm biến gia tốc được chỉ ra ở Hình 2 và Hình 3. Kết quả mô phỏng cho thấy rằng các thuật toán đều cho kết quả cải thiện đáng kể so với tín hiệu thô thu được từ IMU đo đạc. Hình 2. So sánh tốc độ hội tụ của ba kỹ thuật khác nhau sử dụng bộ lọc bù, bộ lọc Kalman và DMP
- 228 KỶ YẾU HỘI THẢO KHOA HỌC QUỐC GIA CITA 2017 “CNTT VÀ ỨNG DỤNG TRONG CÁC LĨNH VỰC” Trong ba kỹ thuật thì bộ lọc bù có tốc độ đáp ứng nhanh nhất ứng với sự thay đổi của tín hiệu đo đạc tuy nhiên vẫn còn bị ảnh hưởng nhiều bởi nhiễu do tính đơn giản của cấu trúc. Còn lại, bộ lọc Kalman mặc dù có cấu trúc phức tạp và tốn thời gian xử lý nhưng tốc độ hội tụ cũng cao hơn đáng kể và ổn định hơn so với kỹ thuật giảm nhiễu sử dụng bộ xử lí chuyển động số tích hợp sẵn bên trong IMU. Thông qua kết quả so sánh dễ nhận thấy rằng bộ lọc Kalman cho kết quả giảm nhiễu tốt hơn nhiều so với hai kỹ thuật còn lại. Hình 3. So sánh các giá trị cảm biến gia tốc trục x xử lý bởi ba kỹ thuật khác nhau sử dụng bộ lọc bù, bộ lọc Kalman và DMP so với tín hiệu gốc Kết quả giảm nhiễu tín hiệu cảm biến trên IMU được áp dụng cho mô hình robot hai bánh tự cân bằng như sơ đồ khối ở Hình 4 và mô hình thực tế ở Hình 5, bên cạnh sử dụng giải thuật điều khiển động cơ (PID) đáp ứng với giá trị góc đo đạc cũng cho thấy khả năng giảm nhiễu của các kỹ thuật nói trên. Hình 4. Sơ đồ khối mô hình robot hai bánh tự cân bằng
- Dương Ngọc Pháp 229 Hình 5. Mô hình robot hai bánh tự cân bằng so sánh thực nghiệm các kỹ thuật giảm nhiễu có kết hợp với giải thuật PID để điều khiển động cơ 4 Kết luận Nghiên cứu đã trình bày việc so sánh các kỹ thuật thực hiện giảm nhiễu cho tín hiệu cảm biến của khối đo lường quán tính ứng dụng trên robot hai bánh tự cân bằng. Việc lựa chọn kỹ thuật sẽ phụ thuộc vào từng ứng dụng cụ thể với những yêu cầu về tốc độ hội tụ, tính ổn định và đáp ứng thời gian thực. Thông qua một số kết quả đánh giá sẽ làm cơ sở để tiếp tục mở rộng so sánh với các kỹ thuật khác, đồng thời đưa ra lựa chọn kỹ thuật phù hợp với hệ thống, ứng dụng thực tế. Tài liệu tham khảo 1. Badri, Abdellatef E., Jyoti K. Sinha, and Alhussein Albarbar. "A typical filter design to improve the measured signals from MEMS accelerometer". Measurement 43.10 (2010): 1425-1430. 2. Kownacki, Cezary. "Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals' filtering". Digital Signal Processing 21.1 (2011): 131-140. 3. Edu, Ioana-Raluca, et al. "Inertial Sensor Signals Denoising with Wavelet Transform." INCAS Bulletin 7.1 (2015): 57. 4. Abbasi-Kesbi, R., and A. Nikfarjam. "Denoising MEMS accelerometer sensors based on L2-norm total variation algorithm". Electronics Letters 53.5 (2017): 322-324. 5. InvenSense Inc. "Embedded Motion Driver v5.1.1: APIs Specification". (Dec 14th, 2012).
CÓ THỂ BẠN MUỐN DOWNLOAD
-
10 "bí quyết" của thợ mua laptop cũ
9 p | 146 | 42
-
CHƯƠNG 5 CÁC CHIẾN LƯỢC THIẾT KẾ GIẢI THUẬT
188 p | 407 | 31
-
SSID cloaking - an toàn hay không an toàn
2 p | 90 | 12
-
Tiết kiệm điện cho máy tính - đồn đại và sự thật
4 p | 103 | 12
-
Kết hợp phân đoạn diễn ngôn với bộ phân tích cú pháp liên kết để phân tích câu ghép nhiều mệnh đề tiếng Việt
13 p | 81 | 8
-
Giới thiệu: PHP Framework là gì
7 p | 78 | 6
-
2 Ứng dụng nén ảnh cho chất lượng cao nhất
5 p | 90 | 5
-
Giải pháp autoscaling hỗn hợp cho nền tảng cloud kubernetes
3 p | 28 | 4
-
Format Factory 3.0.1 : Chuyển đổi video và âm thanh giữ nguyên chất lượng
6 p | 162 | 3
-
Nghiên cứu giải pháp giảm nhiễu nâng cao chất lượng tiếng nói sử dụng bộ lọc Kalman hiệu chỉnh
4 p | 36 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn