Vững vàng nền tảng, Khai sáng tương lai
HƯỚNG DẪN GIẢI BÀI 1,2,3,4 TRANG 9,10 SGK GIẢI TÍCH LỚP 12
(SỰ ĐỒNG BIẾN, NGHỊCH BIẾN CỦA HÀM SỐ)
Hướng dẫn giải và đáp án bài 1 trang 9; bài 2,3,4 trang 10 SGK giải tích lớp 12. Bài: Sự
đồng biến, nghịch biến của hàm số – Chương 1: ứng dụng đạo hàm để khảo sát và vẽ đồ thị
A. Giải bài tập trong SGk
B. Ôn lại lý thuyết
C. Bài tập luyện (Có đáp án)
hàm số.
A. Giải bài tập trong Sách giáo khoa
Bài 1. (trang 9 SGK Giải tích lớp 12)
Xét sự đồng biến, nghịch biến của các hàm số:
a) y = 4 + 3x – x2 ; b) y = 1/3x3 + 3x2 – 7x – 2 ;
c) y = x4 – 2x2 + 3 ; d) y = -x3 + x2 – 5.
Đáp án và Hướng dẫn giải bài 1:
1. a) Tập xác định : D = R;
y’ = 3 – 2x => y’ = 0 ⇔ x = 3/2
Ta có Bảng biến thiên :
Hàm số đồng biến trên khoảng (-∞; 3/2); nghịch biến trên khoảng ( 3/2; +∞ ).
Trang | 1
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807
b) Tập xác định D = R;
Vững vàng nền tảng, Khai sáng tương lai
y’= x2 + 6x – 7 => y’ = 0 ⇔ x = 1, x = -7.
Bảng biến thiên :
Hàm số đồng biến trên các khoảng (-∞ ; -7), (1 ; +∞) ; nghịch biến trên các khoảng (-7 ; 1).
c) Tập xác định : D = R.
y’ = 4x3 – 4x = 4x(x2 – 1) => y’ = 0 ⇔ x = -1, x = 0, x = 1.
Bảng biến thiên : (Học sinh tự vẽ)
Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +∞) ; nghịch biến trên các khoảng (-∞ ; -1),
(0 ; 1).
d) Tập xác định : D = R. y’ = -3x2 + 2x => y’ = 0 ⇔ x = 0, x = 2/3.
Bảng biến thiên :
Hàm số đồng biến trên khoảng ( 0 ; 2/3) ; nghịch biến trên các khoảng (-∞ ; 0), ( 2/3; +∞).
————
Bài 2. (trang 10 SGK Giải tích lớp 12)
Trang | 2
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807
Tìm các khoảng đơn điệu của các hàm số:
Vững vàng nền tảng, Khai sáng tương lai
Đáp án và Hướng dẫn giải bài 2:
a) Tập xác định : D = R\{ 1 }.
Hàm số đồng biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
b) Tập xác định : D = R\{ 1 }.
Hàm số nghịch biến trên các khoảng : (-∞ ; 1), (1 ; +∞).
c) Tập xác định : D = (-∞ ; -4] ∪ [5 ; +∞).
Với x ∈ (-∞ ; -4) thì y’ < 0; với x ∈ (5 ; +∞) thì y’ > 0. Vậy hàm số nghịch biến trên khoảng (-
∞ ; -4) và đồng biến trên khoảng (5 ; +∞).
d) Tập xác định : D = R\{ -3 ; 3 }.
Hàm số nghịch biến trên các khoảng : (-∞ ; -3), (-3 ; 3), (3 ; +∞).
————-
Bài 3. (trang 10 SGK Giải tích lớp 12)
Chứng minh rằng hàm số y = đồng biến trên khoảng (-1 ; 1) và nghịch biến trên các
khoảng (-∞ ; -1) và (1 ; +∞).
Đáp án và Hướng dẫn giải bài 3:
Trang | 3
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807
Tập xác định : D = R. y’ = ⇒ y’ = 0 ⇔ x=-1 hoặc x=1.
Vững vàng nền tảng, Khai sáng tương lai
Bảng biến thiên :
Vậy hàm số đồng biến trên khoảng (-1 ; 1); nghịch biến trên các khoảng (-∞ ; -1), (1 ; +∞).
———–
Bài 4. (trang 10 SGK Giải tích lớp 12)
Chứng minh rằng hàm số y = đồng biến trên khoảng (0 ; 1) và nghịch biến trên các
khoảng (1 ; 2).
Đáp án và Hướng dẫn giải bài 4:
Tập xác định : D = [0 ; 2]; y’ = , ∀x ∈ (0 ; 2); y’ = 0 ⇔ x = 1.
Bảng biến thiên :
Vậy hàm số đồng biến trên khoảng (0 ; 1) và nghịch biến trên khoảng (1 ; 2).
———–
Bài 5. (trang 10 SGK Giải tích lớp 12)
Chứng minh các bất đẳng thức sau:
a) tanx > x (0 < x < π/2);
Trang | 4
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807
b) tanx > x +x3/3 (0 < x <π/2 ).
Vững vàng nền tảng, Khai sáng tương lai
Đáp án và Hướng dẫn giải bài 5:
a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; π/2).
Ta có : y’ = – 1 ≥ 0, x ∈ [0 ;π/2); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ;
π/2).
Từ đó ∀x ∈ (0 ; π/2) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.
b) Xét hàm số y = g(x) = tanx – x – x3/3. với x ∈ [0 ; π/2).
Ta có : y’ = – 1 – x2 = 1 + tan2x – 1 – x2 = tan2x – x2
= (tanx – x)(tanx + x), ∀x ∈ [0 ;π/2 ).
Vì ∀x ∈ [0 ; π/2) nên tanx + x ≥ 0 và tanx – x >0 (theo câu a). Do đó y’ ≥ 0, ∀x ∈ [0 ; π/2). Dễ
thấy y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; π/2). Từ đó : ∀x ∈ [0 ; π/2) thì g(x)
> g(0) ⇔ tanx – x – x3/3 > tan0 – 0 – 0 = 0 hay tanx > x + x3/3.
——————-
B. Ôn lại Lý thuyết sự đồng biến, nghịch biến của hàm số
Tóm tắt lý thuyết
Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.
1. Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀x1, x2 ∈ K, x1 < x2 thì f(x1) < f(x2).
Hàm số y = f(x) nghịch biến (giảm) trên K ⇔ ∀x1, x2 ∈ K, x1 < x2 thì f(x1) > f(x2).
2. Điều kiện cần để hàm số đơn điệu: Cho hàm số f có đạo hàm trên K.
– Nếu f đồng biến trên K thì f'(x) ≥ 0 với mọi x ∈ K.
– Nếu f nghịch biến trên K thì f'(x) ≤ 0 với mọi x ∈ K.
3. Điều kiện đủ để hàm số đơn điệu: cho hàm số f có đạo hàm trên K.
– Nếu f'(x) ≥ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc k thì f
Trang | 5
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807
đồng biến trên K.
Vững vàng nền tảng, Khai sáng tương lai
– Nếu f'(x) ≤ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f
nghịch biến trên K.
– Nếu f'(x) = 0 với mọi x ∈ K thì f là hàm hằng trên K.
4. Quy tắc xét tính đơn điệu của hàm số
a) Tìm tập xác định
b) Tính đạo hàm f'(x). Tìm các điểm xi (i= 1 , 2 ,…, n) mà tại đó đạo hàm bằng 0 hoặc không
xác định.
c) Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.
d) Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Trang | 6
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807
C. Bài tập luyện về hàm số đồng biến nghịch biến có đáp án
Vững vàng nền tảng, Khai sáng tương lai
Đáp án bài tập luyện
Trang | 7
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807
1B 2C 3A 4D 5A
Vững vàng nền tảng, Khai sáng tương lai
Vững vàng nền tảng, Khai sáng tương lai
Website Hoc247.vn cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông minh, nội dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm kinh nghiệm, giỏi về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và các trường chuyên danh tiếng.
I. Luyện Thi Online
Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90%
- Luyên thi ĐH, THPT QG với đội ngũ GV Giỏi, Kinh nghiệm từ các Trường ĐH và THPT danh tiếng.
- H2 khóa nền tảng kiến thức luyên thi 6 môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và Sinh Học.
- H99 khóa kỹ năng làm bài và luyện đề thi thử: Toán,Tiếng Anh, Tư Nhiên, Ngữ Văn+ Xã Hội.
II. Lớp Học Ảo VCLASS
Học Online như Học ở lớp Offline
- Mang lớp học đến tận nhà, phụ huynh không phải đưa đón con và có thể học cùng con.
- Lớp học qua mạng, tương tác trực tiếp với giáo viên, huấn luyện viên.
- Học phí tiết kiệm, lịch học linh hoạt, thoải mái lựa chọn.
- Mỗi lớp chỉ từ 5 đến 10 HS giúp tương tác dễ dàng, được hỗ trợ kịp thời và đảm bảo chất lượng học tập.
Các chương trình VCLASS:
- Bồi dưỡng HSG Toán: Bồi dưỡng 6 phân môn Đại Số, Số Học, Giải Tích, Hình Học và Tổ Hợp dành cho học sinh các khối lớp 10, 11, 12. Đội ngũ Giảng Viên giàu kinh nghiệm: TS. Lê Bá Khánh Trình, TS. Trần Nam Dũng, TS. Pham Sỹ Nam, TS. Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn cùng đôi HLV đạt thành tích cao HSG Quốc Gia.
- Luyện thi vào lớp 10 chuyên Toán: Ôn thi HSG lớp 9 và luyện thi vào lớp 10 chuyên Toán các trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên khác cùng TS.Trần Nam Dũng, TS. Pham Sỹ Nam, TS. Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn.
- Hoc Toán Nâng Cao/Toán Chuyên/Toán Tiếng Anh: Cung cấp chương trình VClass Toán Nâng Cao,
Toán Chuyên và Toán Tiếng Anh danh cho các em HS THCS lớp 6, 7, 8, 9.
III. Uber Toán Học
Học Toán Gia Sư 1 Kèm 1 Online
- Gia sư Toán giỏi đến từ ĐHSP, KHTN, BK, Ngoại Thương, Du hoc Sinh, Giáo viên Toán và Giảng viên ĐH. Day kèm Toán mọi câp độ từ Tiểu học đến ĐH hay các chương trình Toán Tiếng Anh, Tú tài quốc tế IB,…
- Học sinh có thể lựa chọn bất kỳ GV nào mình yêu thích, có thành tích, chuyên môn giỏi và phù hợp nhất.
- Nguồn học liệu có kiểm duyệt giúp HS và PH có thể đánh giá năng lực khách quan qua các bài kiểm tra
độc lập.
- Tiết kiệm chi phí và thời gian hoc linh động hơn giải pháp mời gia sư đến nhà.
Trang | 8
W: www.hoc247.vn F: www.facebook.com/hoc247.vn T: 098 1821 807