intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Khóa luận tốt nghiệp: Nghiên cứu cấu trúc bong bóng trong hạt nhân 54Ca

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:43

40
lượt xem
9
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn nghiên cứu cấu trúc bong bóng tồn tại trong mật độ neutron của hạt nhân 54Ca tại nhiệt độ bằng 0 và nhiệt độ hữu hạn thông qua các tính toán hoàn toàn vi mô. Mời các bạn tham khảo!

Chủ đề:
Lưu

Nội dung Text: Khóa luận tốt nghiệp: Nghiên cứu cấu trúc bong bóng trong hạt nhân 54Ca

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH LUẬN VĂN TỐT NGHIỆP ĐẠI HỌC NGHIÊN CỨU CẤU TRÚC BONG BÓNG TRONG HẠT NHÂN 54Ca Thuộc nhóm ngành khoa học: Vật Lý Hạt Nhân TP Hồ Chí Minh - Năm 2020
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH LUẬN VĂN TỐT NGHIỆP ĐẠI HỌC NGHIÊN CỨU CẤU TRÚC BONG BÓNG TRONG HẠT NHÂN 54Ca Thuộc nhóm ngành khoa học: Vật Lý Hạt Nhân SV thực hiện: Lê Ngọc Uyên Nam, Nữ: Nữ Dân tộc: Kinh Lớp, khoa: K42.SP.LyA, Khoa Vật Lý Ngành học: Sư Phạm Vật Lý Người hướng dẫn khoa học: TS. Phạm Nguyễn Thành Vinh Xác nhận của cán bộ hướng dẫn khoa học Xác nhận của phản biện TP Hồ Chí Minh - Năm 2020
  3. LỜI CẢM ƠN Trong suốt quá trình học tập và nghiên cứu tại Khoa Vật Lý – Đại học Sư Phạm TPHCM, tôi đã nhận được nhiều sự giúp đỡ và động viên từ các thầy cô, gia đình và bạn bè. Tôi xin gửi lời cảm ơn chân thành của mình đến Các thành viên trong gia đình đã luôn quan tâm, ủng hộ về mặt tinh thần, tạo nên nguồn động lực để tôi phấn đấu trong quá trình học tập tại trường đại học và bền chí xuyên suốt quá trình thực hiện khóa luận. PGS.TS Nguyễn Quang Hưng (Viện Nghiên cứu Khoa học cơ bản và Ứng dụng) cùng các Thầy, Cô giảng viên của Khoa Vật Lý trường Đại học Sư Phạm TPHCM đã tận tâm chỉ dẫn nhiệt tình trong quá trình giảng dạy kiến thức mới và nghiên cứu khoa học giúp tôi có thể lĩnh hội kiến thức học thuật và kĩ năng nghiên cứu trong môi trường NCKH chuyên nghiệp. TS. Phạm Nguyễn Thành Vinh cùng Th.S. Lê Tấn Phúc, đồng hướng dẫn khoa học, đã tận tâm cố vấn về mọi mặt về nội dung kiến thức, định hướng nghiên cứu cũng như kĩ thuật tính toán và lập trình, dẫn dắt tôi ngay từ những ngày đầu tiên thực hiện nghiên cứu khoa học, giúp tôi phát triển bản thân về tư duy học thuật cũng như thái độ làm việc có trách nhiệm, đúng giờ, và đã tận tình đọc luận văn và góp ý để tôi có thể hoàn thiện khóa luận tốt nghiệp một cách tốt nhất. Các thành viên của nhóm AMO Group – Đại học Sư Phạm TPHCM đã quan tâm và giúp đỡ tôi trong suốt quá trình nghiên cứu khoa học từ năm thứ hai đến nay. TP. Hồ Chí Minh, tháng 06 năm 2020. Sinh viên Lê Ngọc Uyên
  4. MỤC LỤC DANH MỤC CHỮ VIẾT TẮT .....................................................................................2 DANH SÁCH HÌNH VẼ ...............................................................................................4 DANH SÁCH BẢNG ..................................................................................................... 4 CHƯƠNG 1. TỔNG QUAN ..........................................................................................9 1.1 Cấu trúc bong bóng ............................................................................................ 9 1.2 Hạt nhân 54Ca.................................................................................................... 11 CHƯƠNG 2. PHƯƠNG PHÁP LÝ THUYẾT ...........................................................14 2.1 Trường trung bình Hartree-Fock kết hợp với thế Skyrme............................... 14 2.1.1 Trường trung bình Hartree-Fock.................................................................... 14 2.1.2 Tương tác Skyrme hiệu dụng ......................................................................... 15 2.1.3 Một số tương tác Skyrme thông dụng............................................................ 16 2.2 Hiệu ứng kết cặp trong hạt nhân. ..................................................................... 17 2.2.1 Lời giải chính xác bài toán kết cặp ................................................................ 19 2.3 Phương pháp trường trung bình Hartree-Fock kết hợp với lời giải chính xác bài toán kết cặp ..................................................................................................... 22 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ...............................................................26 3.1 Cấu trúc hạt nhân 54Ca tại T=0......................................................................... 26 3.2 Cấu trúc hạt nhân 54Ca tại T > 0....................................................................... 28 3.2.1 Khe năng lượng kết cặp ................................................................................. 28 3.2.2 Bán kính proton và neutron của 54Ca ............................................................. 30 3.2.3 Phân bố mật độ proton và neutron theo bán kính .......................................... 31 3.2.4 Độ sụt giảm mật độ hạt nhân ......................................................................... 33 KẾT LUẬN ...................................................................................................................35 TÀI LIỆU THAM KHẢO ............................................................................................36 1
  5. DANH SÁCH HÌNH VẼ HÌNH 1. Hàm sóng đơn hạt các proton trong hạt nhân 34Si ............................................. 9 HÌNH 2. Mật độ proton của hai hạt nhân 34Si và 36S ...................................................... 10 HÌNH 3. Minh họa sự phân bố neutron của 54Ca theo các mức năng lượng .................. 11 HÌNH 4. Minh họa sự phân bố neutron của 54Ca theo các mức năng lượng khi có sự đảo mức .................................................................................................................................... 12 HÌNH 5. Cấu hình không gian rút gọn trong các tính toán EP ...................................... 23 HÌNH 6. Cấu trúc thuật toán của quy trình giải tự hợp sử dụng phương pháp HF kết hợp với EP ................................................................................................................................ 24 HÌNH 7. Mật độ proton của hạt nhân 54Ca thu được từ các phương pháp HF, FTEP và HFB tại nhiệt độ bằng 0 ................................................................................................... 27 HÌNH 8. Mật độ neutron của hạt nhân 54Ca thu được từ các phương pháp HF, FTEP và HFB tại nhiệt độ bằng 0 ................................................................................................... 27 HÌNH 9. Khe năng lượng kết cặp của neutron trong hạt nhân 54Ca thu được từ phương pháp FTEP tại nhiệt độ hữu hạn ...................................................................................... 29 HÌNH 10. Bán kính proton và neutron của hạt nhân 54Ca thu được từ các tính toán FTEP tại nhiệt độ hữu hạn ......................................................................................................... 30 HÌNH 11. Mật độ neutron của hạt nhân 54Ca tại nhiệt độ hữu hạn thu được từ phương pháp FTEP ................................................................................................................................. 31 HÌNH 12. Mật độ proton của hạt nhân 54Ca tại nhiệt độ hữu hạn thu được từ phương pháp FTEP ................................................................................................................................. 32 HÌNH 13. Độ sụt giảm mật độ neutron trong hạt nhân 54Ca theo nhiệt độ .................... 34 2
  6. DANH MỤC CHỮ VIẾT TẮT Hartree-Fock mean field HF Trường Trung bình Hartree-Fock. Exact pairing EP Lời giải chính xác bài toán kết cặp Bardeen-Cooper-Shrieffer theory BCS Lý thuyết Bardeen-Cooper-Shrieffer Hartree-Fock-Bogoliubov method Phương pháp trường trung bình HFB Bogoliubov Root-mean-square radii r.m.s Bán kính căn quân phương Independent-particle model IPM Mẫu đơn hạt độc lập 3
  7. DANH SÁCH BẢNG Bảng 1. Một số lực Skyrme thông dụng......................................................................... 15 Bảng 2. Năng lượng liên kết riêng và bán kính hạt nhân 54Ca thu được từ phương pháp HF và FTEP tại nhiệt độ bằng 0 .................................................................................... 25 4
  8. MỞ ĐẦU Lí do chọn đề tài Hạt nhân nguyên tử là một hệ nhiều hạt (many-body system) gồm các proton và neutron được liên kết với nhau bằng lực tương tác mạnh. Việc nghiên cứu cấu trúc của hạt nhân giúp chúng ta làm sáng tỏ nhiều vấn đề quan trọng như các quá trình hạt nhân xảy ra trong tự nhiên (trên trái đất và ngoài vũ trụ), các phản ứng hạt nhân nhân tạo và làm tiền đề cho các ứng dụng kỹ thuật hạt nhân vào công nghiệp và đời sống. Trong các nghiên cứu về cấu trúc hạt nhân, hướng nghiên cứu về sự phân bố của các nucleon trong hạt nhân là một hướng quan trọng. Hướng nghiên cứu này giúp ta có thể mô hình hóa một cách rõ ràng hình dạng và cấu trúc của hạt nhân thông qua biểu diễn mật độ nucleon. Đại lượng mật độ nucleon (gồm mật độ proton và neutron) được tính toán thông qua hàm sóng đơn hạt của hạt nhân. Thông thường, mật độ nucleon cực đại tại tâm hạt nhân (r=0) và giảm dần khi bán kính tăng. Tuy nhiên đối với một số hạt nhân đặc biệt, mật độ nucleon bị sụt giảm tại tâm. Cụ thể là, mật độ hạt nhân cực đại không xuất hiện tại r=0 mà tại vị trí bên ngoài tâm (trong khoảng 1-4 fm). Cấu trúc mật độ nucleon đặc biệt này được gọi là cấu trúc bong bóng (bubble structure). Cấu trúc này được đề cập đến lần đầu tiên bởi H. A. Wilson vào năm 1946 khi ông sử dụng các dao động cổ điển của các lớp vỏ cầu trong hạt nhân để mô tả các trạng thái kích thích thấp (low-lying excited state) trong hạt nhân cầu [1]. Cho đến những năm 1970-1973, các nhóm nghiên cứu của Wong [2,3], Campi và Sprung [4] mới thực hiện các tính toán vi mô đầu tiên cho cấu trúc “bong bóng” trong hạt nhân. Từ đó đến nay, đã có rất nhiều nghiên cứu về cấu trúc này [5-12], điển hình như cấu trúc bong bóng trong các hạt nhân tiêu biểu 34Si và 22O [7,9,11]. Hiện nay, các lý thuyết hạt nhân hiện đại lý giải rằng sự hình thành cấu trúc bong bóng là do sự không chiếm đóng quỹ đạo s của các nucleon [11,12]. Lý do là hàm sóng s là hàm sóng duy nhất có đỉnh cực đại tại vị trí tâm hạt nhân và đóng góp chính vào vị trí r=0 của phân bố mật độ hạt nhân. Do đó việc không chiếm đóng mức s sẽ làm cho sự đóng góp của hàm sóng này vào mật độ bị bỏ qua. Điều này làm giảm mật độ hạt nhân tại tâm và gây ra cấu trúc bong bóng. Các nghiên cứu cấu trúc bong bóng cho đến trước năm 2017 vẫn là những nghiên cứu lý thuyết thuần túy. Vào năm 2017, lần đầu tiên người đo được giá trị rất bé của số 5
  9. chiếm đóng toàn phần (occupancy) tại mức 2s1/2 của hạt nhân 34Si [13]. Đây là bằng chứng thực nghiệm đầu tiên cho thấy rằng cấu trúc bong bóng được tiên đoán bởi lý thuyết có tồn tại trong phân bố mật độ proton của hạt nhân này. Từ đó đến nay, hương nghiên cứu cấu trúc bong bóng đang dần sôi động trở lại trong cộng đồng nghiên cứu hạt nhân lý thuyết [10-12]. Tại Việt Nam, hướng nghiên cứu này đang được hình thành và phát triển bởi nhóm Vật Lý Hạt Nhân của trường Đại Học Duy Tân (cơ sở TP. HCM) mà đứng đầu là PGS. TS. Nguyễn Quang Hưng cùng các cộng sự. Gần đây, nhóm vừa công bố kết quả nghiên cứu về cấu trúc “bong bóng” của hạt nhân 22O và 34Si sử dụng trường trung bình Hartree- Fock (HF) có tính đến hiệu ứng kết cặp trong hạt nhân tại nhiệt độ bằng 0 và nhiệt độ hữu hạn [11]. Nghiên cứu này đã lần đầu tiên khảo sát sự thay đổi của cấu trúc bong bóng theo nhiệt độ và đánh giá sự tồn tại của cấu trúc này tại nhiệt độ hữu hạn. Đây là tiền đề để phát triển các nghiên cứu về cấu trúc bong bóng tại nhiệt độ hữu hạn [12,14-16]. Mặt khác, các nghiên cứu về những hạt nhân giàu neutron và xa đường bền như 48Si [17-19] và 54Ca [20,21] đang là những hướng nghiên cứu có ảnh hưởng lớn, nhằm khám phá ra các số magic mới như 14 và 34 [19,20]. Dựa trên sự kế thừa hướng nghiên cứu về cấu trúc bong bóng của hạt nhân tại nhiệt độ hữu hạn [11] và tầm quan trọng của các nghiên cứu cấu trúc các hạt nhân giàu neutron xa đường bền, trong khuôn khổ khóa luận, tôi sẽ nghiên cứu cấu trúc mật độ nucleon của một hạt nhân magic kép giàu neutron và xa đường bền đó là 54Ca. Đây là một hạt nhân đặc biệt, có lớp vỏ proton Z=20 là lớp vỏ magic truyền thống và số neutron N=34 được cho là số magic mới của các hạt nhân xa đường bền và chưa có nhiều dữ liệu thực nghiệm cũng như các tính toán lý thuyết về hạt nhân này [20]. Hơn nữa, với 34 neutron, hạt nhân 54Ca sẽ trống phân lớp neutron 3s1/2. Đây là cơ sở tồn tại cấu trúc bong bóng trong mật độ neutron của 54Ca. Cấu trúc bong bóng của hạt nhân này sẽ được nghiên cứu thông qua cách tính toán mật độ của các nucleon trong hạt nhân. Các tính toán này sẽ được thực hiện dựa trên việc giải phương trình HF trong trường trung bình hạt nhân, chi tiết cụ thể sẽ trình bày ở phần bên dưới. Trong khuôn khổ khóa luận, cấu trúc bong bóng trong hạt nhân 54Ca se được khảo sát tại nhiệt độ bằng 0 và nhiệt độ hữu hạn có xét đến tương tác cặp giữa các nucleon thông qua phương pháp trường trung bình Hartree-Fock kết hợp lời giải chính xác của bài toán kết cặp trong hạt nhân (Exact pairing, viết tắt là EP). 6
  10. Mục tiêu của luận văn Nghiên cứu cấu trúc bong bóng tồn tại trong mật độ neutron của hạt nhân 54Ca tại nhiệt độ bằng 0 và nhiệt độ hữu hạn thông qua các tính toán hoàn toàn vi mô. Phương pháp nghiên cứu Luận văn sử dụng phương pháp trường trung bình Hartree-Fock với lực Skyrme hiệu dụng có tính đến hiệu ứng kết cặp thông qua bài toán EP tại nhiệt độ bằng 0 và nhiệt độ hữu hạn. Ngôn ngữ lập trình FORTRAN 77 được sử dụng để thực hiện các tính toán trong luận văn. Nội dung nghiên cứu Nội dung chính của nghiên cứu là mô tả được mật độ nucleon của hạt nhân 54Ca, thông qua đó cấu trúc bong bóng có thể được phát hiện và khảo sát tại nhiệt độ bằng 0 và nhiệt độ hữu hạn. Các tương tác nucleon-nucleon của hạt nhân được mô tả thông qua một trường trung bình nơi chúng chỉ tương tác với trường trung bình này mà không tương tác lẫn nhau. Dựa trên cơ sở đó, hiệu ứng kết cặp được đưa vào trường trung bình này thông qua các số chiếm đóng đơn hạt được biểu diễn trong hệ thống kê chính tắc (Canonical ensemble) nhằm mô tả tính chất của hạt nhân tại nhiệt độ bằng 0 và nhiệt độ. Các đại lượng mô tả tính chất của hạt nhân như năng lượng liên kết, bán kính hạt nhân, mật độ hạt nhân và số chiếm đóng đơn hạt sẽ được khảo sát. Đối tượng nghiên cứu Đối tượng nghiên cứu của luận văn là hạt nhân 54Ca. Đây là hạt nhân magic kép giàu neutron và xa đường bền đồng thời cũng là hạt nhân bong bóng. Nội dung của luận văn Chương 1: Tổng quan Chương 1 trình bày tổng quan về cấu trúc bong bóng và hạt nhân 54Ca. Chương 2: Phương pháp lý thuyết Chương 2 trình bày các phương pháp lý thuyết sử dụng trong luận văn gồm: 7
  11. - Phương pháp trường trung bình Hartree-Fock (HF) với tương tác Skyrme hiệu dụng. - Mô tả cách tiếp cận hiệu ứng kết cặp thông qua bài toán kết cặp giải chính xác (EP) tại nhiệt độ bằng 0 và nhiệt độ hữu hạn. - Phương pháp HF kết hợp EP tại nhiệt độ bằng 0 và nhiệt độ hữu hạn Chương 3: Kết quả và thảo luận Chương 3 trình bày kết quả tính toán các đại lượng mô tả tính chất của hạt nhân theo nhiệt độ như: mật độ proton và neutron, bán kính neutron và bán kính proton, khe năng lượng kết cặp. Từ đó, chúng ta đưa ra một số nhận xét về đặc điểm của cấu trúc hạt nhân 54Ca và khảo sát cấu trúc bong bóng trong phân bố mật độ neutron tại nhiệt độ bằng 0 và nhiệt độ hữu hạn. 8
  12. CHƯƠNG 1. TỔNG QUAN 1.1 Cấu trúc bong bóng Cấu trúc bong bóng trong một hạt nhân được định nghĩa bằng sự sụt giảm phân bố mật độ proton/neutron tại tâm của hạt nhân. Hiện tượng này được giải thích là do sự không chiếm đóng quỹ đạo s của các nucleon. Cụ thể, trong lý thuyết mẫu vỏ (shell- model), các nucleon sẽ lần lượt nằm tại các mức năng lượng đơn hạt khác nhau. Đặc trưng cho mỗi nucleon là các thông số lượng tử n, l, j, và m. Cụ thể, n là số lượng tử chính, l là số lượng tử đặc trưng cho momen góc, j là số lượng tử đặc trưng cho sự tự quay của nucleon – spin và m là giá trị hình chiếu của j. Ứng với mỗi trạng thái đơn hạt tồn tại một hàm sóng đơn hạt mô tả trạng thái đó. Hình 1 mô tả dạng của các hàm sóng đơn hạt các mức s (1s1/2 và 2s1/2), p (1p1/2 và 1p3/2) và d (1d5/2) của các proton chiếm đóng các quỹ đạo dưới mức Fermi trong hạt nhân 34Si [11]. Qua hình 1 ta có thể thấy rằng các hàm sóng s là những hàm có đỉnh cực đại tại tâm của hạt nhân và đóng góp chính vào mật độ nucleon tại vị trí r=0. Các hàm sóng khác có đỉnh cực đại nằm xa tâm và đóng góp vào mật độ nucleon tại các vùng có r >0. Điều này nói lên việc những hạt nhân nào có lớp vỏ nucleon bị trống các mức s sẽ dẫn đến mật độ nucleon tại tâm của hạt nhân đó bị sụt giảm. Hình 1. Hàm sóng đơn hạt của các proton trong hạt nhân 34Si [11]. Như vậy, để tiên đoán một hạt nhân có cấu trúc bong bóng hay không ta có thể xem xét các lớp vỏ nucleon của nó. Nếu hạt nhân nào trống các quỹ đạo s thì khả năng cao là tồn tại cấu trúc bong bóng trong phân bố mật độ nucleon của chúng. Trên hình 2 9
  13. trình bày mật độ proton của hai hạt nhân 34Si và 36S là trường hợp tiêu biểu để nhận biết cấu trúc bong bóng trong tồn tại trong một hạt nhân. Hạt nhân 34Si có 14 proton và trống mức 1s1/2 (có cấu trúc bong bóng) trong khi đó hạt nhân 36S có 16 proton và lấp đầy mức 1s1/2 (không có cấu trúc bong bóng). Dựa vào luận điểm trên, các hạt nhân bong bóng tiêu biểu được tiên đoán như: 22O trống mức 2s1/2 trong lớp vỏ neutron [7,11,12,15], 34Si và 46Ar trống mức 2s1/2 trong lớp vỏ proton [6,7,11-15], 48Si trống mức 3s1/2 trong lớp vỏ neutron và 2s1/2 trong lớp vỏ proton [15,17], 54Ca trống mức 3s1/2 trong lớp vỏ neutron [17]. Trong đó các hạt nhân 46Ar, 48Si và 54Ca là những hạt nhân xa đường bền thường được gọi là hạt nhân lạ (exotic nuclei), có hiện tượng đảo mức đơn hạt. Có nghĩa là, các mức đơn hạt sẽ không được xếp theo thứ tự của mẫu vỏ truyền thống mà xảy ra việc đảo thứ tự ở một vài mức. Tiêu biểu như hạt nhân 46Ar có 18 proton và lẽ ra phải chiếm đóng mức 2s1/2; tuy nhiên do có sự đảo mức 2p3/2 xuống dưới mức 2s1/2 do đó làm trống mức 2s1/2 và gây ra cấu trúc bong bóng [6]. Đặc biệt hai hạt nhân 48Si và 54Ca được tiên đoán là những hạt nhân magic kép và có rất ít các nghiên cứu về cấu trúc hai hạt nhân này. Hình 2. Mật độ proton của hai hạt nhân 34Si và 36S [7] Các nghiên cứu cấu trúc bong bóng trong hạt nhân được bắt đầu vào năm 1946 bởi H. A. Wilson khi ông mô tả các trạng thái kích thích thấp trong hạt nhân cầu bằng các dao động của các lớp vỏ cầu có cấu trúc như các bong bóng [1]. Từ đó cho đến những năm 1970 mới xuất hiện những mô hình tính toán vi mô đầu tiên được phát triển bởi các nhóm của Wong [2,3], Campi và Sprung [4]. Hiện nay các nghiên cứu lý thuyết về cấu trúc bong bóng được thực hiện chủ yếu trên cơ sở trường trung bình tương đối tính 10
  14. (relativistic mean field) và trường trung bình phi tương đối tính (non-relativistic mean filed) [5-16]. Gần đây, cấu trúc bong bóng được quan tâm nghiên cứu nhiều trong vùng hạt nhân có khối lượng nặng và siêu nặng [15,22-25]. Bằng chứng thực nghiệm đầu tiên về sự tồn tại của cấu trúc bong bóng được công bố vào năm 2017 [13] đã chứng tỏ các tiên đoán lý thuyết từ trước tới nay là có cơ sở tin cậy. Tại Việt Nam, các nghiên cứu lý thuyết về cấu trúc bong bóng mới được thực hiện gần đây bởi nhóm nghiên cứu của Đại học Duy Tân [11]. Kết quả nghiên cứu của nhóm này lần đầu tiên chỉ ra sự biến mất của cấu trúc bong bóng khi nhiệt độ của hệ hạt nhân tăng lên tới một giá trị xác định. Các kết quả này mở ra hướng nghiên cứu đầu tiên về cấu trúc bong bóng của hạt nhân tại nhiệt độ hữu hạn [12,14-16] và là tiền đề để luận văn này được thực hiện. 1.2 Hạt nhân 54Ca Với số neutron N=34 (trống mức 3s1/2) và là một hạt nhân magic kép giàu neutron và xa đường bền, 54Ca là một ứng cử viên tốt cho việc nghiên cứu cấu trúc bong bóng và là đối tượng nghiên cứu chính của luận văn. Hình 3. Minh họa sự phân bố neutron của 54Ca theo các mức năng lượng theo mẫu truyền thống [37]. Sự phân bố các neutron của 54Ca trên các mức đơn hạt được minh họa bởi hình 3. Ta dễ dàng quan sát thấy ngay trên mức Fermi của lớp vỏ neutron trong hạt nhân 54Ca không phải là mức s, vì vậy có thể cấu trúc bong bóng của neutron không tồn tại. Tuy 11
  15. nhiên đối với hạt nhân nằm xa đường bền như hay 54Ca, mẫu vỏ hạt nhân truyền thống không còn mô tả đúng cấu trúc nucleon của các hạt nhân này. Sự thay đổi vị trí các mức đơn hạt trong các hạt nhân giàu neutron nằm xa đường bền (hạt nhân lạ) đến từ các hiệu ứng phức tạp có liên quan đến lực hạt nhân [17] mà cụ thể hơn là các thành phần lực tương tác ba nucleon (three-nucleon forces) [26]. Hình 4 minh họa các mức đơn hạt của lớp vỏ neutron trong hạt nhân 54Ca được tính toán từ phương pháp Hartree-Fock với lực Skyrme hiệu dụng [27]. Hình 4 cho thấy một số mức đơn hạt trên mức Fermi đã được sắp xếp lại, hiện tượng này được gọi là hiện tượng đảo mức [17,26]. Cụ thể là, mức 3s1/2 đã được dời xuống ba mức và nằm ngay trên mức 1g9/2. Lúc này mức 3s1/2 cách mức Fermi hai mức đơn hạt thay vì năm mức đơn hạt như trong mẫu vỏ truyền thống. Việc đảo mức như vậy tạo điều kiện cho cấu trúc bong bóng tồn tại trong mật độ neutron của 54Ca. Hình 4. Minh họa sự phân bố neutron của 54Ca theo các mức năng lượng khi có sự đảo mức. Sự tồn tại của cấu trúc bong bóng trong các hạt nhân xa đường và giàu neutron như 54Ca được coi là một dẫn dắt quan trọng cho việc tiên đoán các số magic mới của các hạt nhân lạ dựa trên quan hệ giữa sự sụt giảm mật độ tại tâm và tính magic của một hạt nhân [26]. Từ những năm đầu của thập niên 70, việc nghiên cứu những hạt nhân lạ trở thành chủ đề thu hút nhiều sự quan tâm của các nhà khoa học, khơi nguồn từ hai hội nghị quốc tế quan trọng về hạt nhân xa đường bền năm 1967 [28] và 1970 [29]. Từ đó đến nay, đã có nhiều hạt nhân xa đường bền được nghiên cứu về mặt lý thuyết và thực nghiệm. Các kết quả tiêu biểu đạt được như tìm ra các số magic mới trong các hạt nhân lạ 12
  16. [13,20,30-32]. Do đó, việc nghiên cứu 54Ca đóng góp vai trò vào nghiên cứu lý thuyết hạt nhân. Vì thế, trong đề tài luận văn này, tôi chọn hạt nhân 54Ca làm đối tượng nghiên cứu. Một số thông số thực nghiệm đo đạc được của 54Ca tại trung tâm KAERI [33]: - Khối lượng hạt nhân: 53.97340 ± 0.00054 u - Năng lượng liên kết: 8.240 ± 0.009 MeV 13
  17. CHƯƠNG 2. PHƯƠNG PHÁP LÝ THUYẾT 2.1 Trường trung bình Hartree-Fock kết hợp với thế Skyrme 2.1.1 Trường trung bình Hartree-Fock Các nucleon trong một hạt nhân nguyên tử tương tác với nhau bằng lực tương tác mạnh và bài toán hệ hạt nhân là bài toán hệ nhiều hạt tuân theo các quy luật thống kê lượng tử. Việc giải bài toán hệ nhiều hạt cho 3 hạt trở lên tương tác lẫn nhau là phức tạp và gần như không có lời giải chính xác. Do đó các mô hình gần đúng để làm đơn giản hóa bài toán được áp dụng rộng rãi trong nghiên cứu cấu trúc hạt nhân. Một trong các phương pháp mạnh mẽ và phổ biến để mô tả hệ nhiều hạt là phương pháp trường trung bình Hartree-Fock (HF). Phương pháp này được phát triển bởi Hartree và Fock vào những năm 1930 [34,35]. Trong nghiên cứu cấu trúc hạt nhân, phương pháp HF được sử dụng rộng rãi để mô tả tính chất của hạt nhân ở trạng thái cơ bản. Ý tưởng chính của phương pháp HF là xem các tương tác giữa những nucleon với nhau như một trường trung bình. Mỗi nucleon sẽ tương tác với trường này chứ không tương tác lẫn nhau nữa. Hệ hạt nhân gồm các nucleon độc lập nằm trong trường trung bình với hàm sóng toàn phần được mô tả bởi hàm sóng đơn hạt thông qua định thức Slater có biểu thức như sau [36,37]:  1 (r1 )  1 (rA ) 1  (r1...rA ) = (2.1) A!  A (r1 )  A (rA ) với  1 , 2 , …,  A là các hàm sóng đơn hạt của hệ gồm có A nucleon và  (r1...rA ) là hàm sóng toàn phần của hệ. Phương pháp HF được áp dụng cho proton và neutron một cách riêng lẽ. Hamiltonian của hệ sẽ được xây dựng dựa trên hàm sóng đơn hạt và các mức năng lượng đơn hạt. Cụ thể là: 2  Hˆ i i =  Ei i với Hˆ i = − i i 2m  2 + V (r ) . (2.2) Phương trình (2.2) gồm các thành phần động năng và thế năng tương tác của hệ hạt nhân. Phương trình HF được giải bằng phương pháp lặp thông qua việc định nghĩa các phương trình dòng và mật độ của hệ nucleon. Cụ thể là [38]: 14
  18. 2 j +1 2 q (r ) =  f j  j (r ) , (2.3) j 4 2 j +1  l (l + 1) 2   q (r ) =  f j ( )  j ( r ) , 2      r   + (2.4) 4  r j j r2  2 j +1  3 2 J q (r ) =  f j  j ( j + 1) − l (l + 1) −   2j ( r ) , (2.5) j 4  4 r với ρ, τ và J lần lược là các phương trình mô tả mật độ nucleon, mật độ động năng và mật độ dòng spin-quỹ đạo. Ký hiệu q đại diện cho proton hoặc neutron, số hạng fj là số chiếm đóng đơn hạt đại diện cho xác suất tồn tại nucleon trên một mức đơn hạt j. Đối với trường trung bình HF mô tả hạt nhân ở trạng thái cơ bản, fj nhận giá trị bằng 1 đối với các mức đơn hạt bị chiếm đóng nằm dưới mức Fermi, và bằng 0 đối với các mức đơn hạt không chiếm đóng nằm trên mức Fermi. Khi tính đến kết cặp hoặc nhiệt độ, các giá trị số chiếm đóng này có sự phân bố lại và sẽ được trình bày trong phần kế tiếp. 2.1.2 Tương tác Skyrme hiệu dụng Trong phương trình HF (2.2), thành phần thế năng tương tác mạnh giữa các nucleon hiện nay vẫn chưa có dạng tường minh. Do đó, để giải phương trình HF, ta sử dụng các dạng thế bán thực nghiệm như thế Wood-Saxon, thế Skyrme, thế Gogny. Trong khuôn khổ luận văn này, chúng tôi sử dụng tương tác Skyrme hiệu dụng để mô hình hóa trường trung bình và thực hiện các tính toán số. Tương tác Skyrme hiệu dụng được đề xuất bởi T. H R Skyrme vào năm 1958 [39]. Trong công trình của mình, Skyrme đã biểu diễn lại thế tương tác hiệu dụng giữa các nucleon với nhau thông qua hai thành phần là tương tác giữa 2 nucleon V (i, j ) và 3 nucleon V (i, j, k ) như sau: V = V (i, j ) +  V (i, j, k) . (2.6) i j i  j k Lúc này, Hamiltonian 2.2 trở thành: 2 Hˆ i = −  2 +  V (i, j ) +  V (i, j, k) . (2.7) 2mi i j i j k Trong đó, thế tương tác hai hạt và ba hạt lần lượt có dạng: 15
  19. V (i, j) = t o (1 + xo P ) (r1 − r2 ) + t1 (1 + x1P )  (r1 − r2 )k 2 + k'  (r1 − r2 )  + t2 k ' (r1 − r2 )k 1 2 2   +iW0 ( i +  j )k   (r1 − r2 )k , (2.8) V (i, j, k ) = t3 (r1 − r2 ) (r2 − r3 ) , (2.9) với các tham số ti, xi (i=0,1,2,3) và W0 mô tả cường độ tương tác thu được từ phương 1 pháp bán thực nghiệm. Số hạng P = (1 +  i j ) là toán tử trao đổi spin với  là ma trận 2 (1 −  2 ) −(1 − 2 ) Pauli. k = và k ' = là toán tử tương quan số sóng giữa hai nucleon 2i 2i [40]. Tương tác ba hạt V(i,j,k) có thể được đưa về tương tác hai hạt V(i,j) thông qua mật độ hạt nhân [41]: t3 r +r Vijk Vij = (1 + P ) (r1 − r2 )   ( 1 2 ) , (2.10) 6 2 với ρ là mật độ hạt nhân toàn phần được tính bằng tổng mật độ neutron và proton ρ=ρZ+ρN. Dựa vào tương tác Skyrme hiệu dụng ta có thể mô hình hóa trường trung bình và sử dụng phương pháp biến phân tính toán các đại lượng mô tả trạng thái cơ bản của hạt nhân thông qua các phương trình (2.3)-(2.5). 2.1.3 Một số tương tác Skyrme thông dụng Trong biểu thức tương tác Skyrme (2.8) và (2.9), các tham số ti, xi, W0 được điều chỉnh sao cho giá trị độ nén của vật chất hạt nhân (incompressibility) phù hợp với giá trị thực nghiệm. Hiệu ứng nhiệt được giả định là không ảnh hưởng đáng kể đến các tương tác nucleon-nucleon do đó giá trị các các tham số lực Skyrme được giữ nguyên khi ta xét hạt nhân ở trạng thái kích thích thấp hoặc tại nhiệt độ hữu hạn như trong khuôn khổ nghiên cứu của luận văn. Bảng 1 trình bày các giá trị t0, t1, t2, t3, W0, x0 của một số lực Skyrme thông dụng. Bảng 1. Một số lực Skyrme thông dụng t0 t1 t2 t3 W0 x0 x1 x2 x3 α SLy4[42] -2488.91 486.82 -546.39 13777.00 123.00 0.834 -0.344 -1.000 1.354 1/6 SLy5[42] -2484.88 483.13 -549.40 13763.00 126.00 0.778 -0.328 -1.000 1.267 1/6 SkM*[43] -2645.00 410.00 -135.00 15595.00 130.00 0.090 0 0 0 1/6 16
  20. SIII[44] -1128.75 395.30 -95.00 14000.00 120.00 0.450 0 0 0 0 MSk3[45] -1810.32 269.09 -269.09 13027.50 116.87 0.631 -0.5 -0.5 0.903 1/3 BSk14[46] -1822.67 377.47 -2.41 11406.30 135.56 0.302 -0.823 61.941 0.473 1/3 Mỗi dạng lực Skyrme có những điểm mạnh riêng biệt tùy vào mục đích tạo ra chúng. Điển hình như các lực thuộc họ BSk mô tả tốt cho khối lượng hạt nhân; họ các lực MSk mô tả tính chất của các hạt nhân cầu; lực SkM* được làm khớp với năng lượng liên kết riêng và mô tả tốt rào phân hạch của Actinide; các lực thuộc họ SLy mô tả tốt tính chất của vật chất neutron, sao neutron và các trạng thái cơ bản của hạt nhân nặng [47]. Trong đó, hai họ lực MSk và BSk được cho là phù hợp để tính toán cho các hạt nhân cầu có ảnh hưởng của hiệu ứng kết cặp [11]. Trong khuôn khổ luận văn, chúng tôi sử dụng lực MSk3 để thực hiện tất cả các tính toán cho hạt nhân 54Ca bởi tính ưu việt của lực này. Như đã đề cập phía trên, lực MSk3 thuộc họ MSk là loại lực phù hợp với các tính toán cho hạt nhân cầu có ảnh hưởng bởi hiệu ứng kết cặp như hạt nhân giàu neutron là 54Ca. Trong đó, hiệu ứng kết cặp là một trong những nguyên nhân quan trọng làm ảnh hưởng đến cấu trúc bong bóng tại nhiệt độ hữu hạn [11]. Hơn nữa, lực MSk3 đã được sử dụng để mô tả tốt cho các đại lượng như năng lượng liên kết riêng, năng lượng tách neutron và số chiếm đóng mức 2s1/2 của các hạt nhân bong bóng 22O và 34Si [11]. Kế thừa kết quả đó, lực MSk3 sẽ tiếp tục được sử dụng cho các tính toán trong luận văn. Như vậy, phương pháp trường trung bình HF với tương tác Skyrme hiệu dụng giúp chúng ta mô tả cấu trúc của hạt nhân ở trạng thái cơ bản. Tuy nhiên, phương pháp HF chỉ mô tả tốt cho các hạt nhân cầu có khối lượng trung bình và nặng. Đối với các hạt nhân nhẹ, hoặc các hạt nhân giàu neutron và xa đường bền chịu ảnh hưởng mạnh mẽ của hiệu ứng kết cặp thì các kết quả tính toán từ HF không còn phù hợp nữa [11,37]. Do đó, khi tính toán cho nhưng hạt nhân giàu neutron và xa đường bền (như hạt nhân 54Ca) ta cần phải tính đến hiệu ứng kết cặp trong các tính toán HF. Việc xây dựng trường trung bình HF kết hợp hiệu ứng kết cặp sẽ được trình bày trong phần kế tiếp. 2.2 Hiệu ứng kết cặp trong hạt nhân. 17
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2