intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

PHƯƠNG TRÌNH VÀ BPT VÔ TỈ HỆ PT VÀ HỆ BPT

Chia sẻ: Abcdef_6 Abcdef_6 | Ngày: | Loại File: PDF | Số trang:0

133
lượt xem
31
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'phương trình và bpt vô tỉ hệ pt và hệ bpt', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: PHƯƠNG TRÌNH VÀ BPT VÔ TỈ HỆ PT VÀ HỆ BPT

  1. WWW.VNMATH.COM Chuyªn ®Ò: ph−¬ng tr×nh, bÊt ph−¬ng tr×nh v« tØ, hÖ ph−¬ng tr×nh vμ hÖ bÊt ph−¬ng tr×nh QUA C¸C §Ò THI §¹I HäC PhÇn I: Ph−¬ng tr×nh v« tØ Ph−¬ng ph¸p 1:Ph−¬ng ph¸p gi¶i d¹ng c¬ b¶n: g  x   0 1/ f  x   g  x    f  x   g  x  2 2/ f  x   g  x   h  x  B×nh ph−¬ng hai vÕ 1-(§HQGHN KD-1997) 16x  17  8x  23 2-(§H C¶nh s¸t -1999) x 2  x 2  11  31 3-(HVNHHCM-1999)  x 2  4x  2  2x 4-(§H Th−¬ng m¹i-1999) Gi¶i vμ biÖn luËn pt: m  x 2  3x  2  x 5-(§HC§ KB-2006) T×m m ®Ó pt sau cã hai nghiÖm thùc ph©n biÖt: x 2  mx  2  2x  1 6-(§GKTQD-2000) 5x  1  3x  2  x  1  0 7-(§HSP 2 HN) x  x  1  x  x  2   2 x 2 8-(HVHCQ-1999) x  3  2x  1  3x  2 9-(HVNH-1998) 3x  4  2x  1  x  3 10-(§H Ngo¹i th−¬ng-1999) 3  x  x2  2  x  x2  1 Ph−¬ng ph¸p 2: ph−¬ng ph¸p ®Æt Èn phô: I-§Æt Èn phô ®−a pt vÒ pt theo Çn phô: a b D¹ng 1: Pt d¹ng: ax 2  bx  c  px 2  qx  r trong ®ã  p q C¸ch gi¶i: §Æt t  px 2  qx  r §K t  0 1
  2. WWW.VNMATH.COM 1-(§H Ngo¹i th−¬ng-2000)  x  5 2  x   3 x 2  3x 2-(§H Ngo¹i ng÷ -1998)  x  4  x  1  3 x 2  5x  2  6 3-(§H CÇn th¬-1999) (x  1)(2  x)  1  2x  2x 2 4x 2  10x  9  5 2x 2  5x  3  18x  5  3 9x 2  9x  2 2 3 4- 5- 18x 6- 3x 2  21x  18  2 x 2  7x  7  2 D¹ng 2: Pt D¹ng: P(x)   Q(x)   P(x).Q(x)  0    0  P  x   0 C¸ch gi¶i: * NÕu P  x   0  pt   Q  x   0 Qx * NÕu P  x   0 chia hai vÕ cho P  x  sau ®ã ®Æt t  t0 Px 3 x 1  m x 1  2 x2 1 4 1-(§HC§ KA-2007) T×m m ®Ó pt sau cã nghiÖm: 2-   2 x 2  3x  2  3 x 3  8 3-   2 x 2  2  5 x3  1 D¹ng 3: Pt D¹ng :   P  x   Q  x     Px  Qx   2 P  x  .Q  x     0  2  2  0  t  P  x   Q  x   t 2  P  x   Q  x   2 P  x  .Q  x  C¸ch gi¶i: §Æt 2 1-(§HQGHN-2000) 1 x  x2  x  1 x 3 2-(HVKTQS-1999) 3x  2  x  1  4x  9  2 3x 2  5x  2 3-(Bé quèc phßng-2002) 2x  3  x  1  3x  2 2x 2  5x  3  16 4- 4x  3  2x  1  6x  8x 2  10x  3  16 5-(C§SPHN-2001) x  2  x  2  2 x 2  4  2x  2 2
  3. WWW.VNMATH.COM D¹ng 4: Pt D¹ng: a  cx  b  cx  d  a  cx  b  cx   n Trong ®ã a, b,c,d, n lμ c¸c h»ng sè , c  0,d  0 C¸ch gi¶i: §Æt t  a  cx  b  cx ( a  b  t  2  a  b  1-(§H Má-2001) x  4  x 2  2  3x 4  x 2 2- 3  x  6  x   3  x  6  x   3 3-(§HSP Vinh-2000) Cho pt: x 1  3  x   x  1 3  x   m a/ Gi¶i pt khi m2 b/T×m c¸c gt cña m ®Ó pt cã nghiÖm 4-(§HKTQD-1998) Cho pt 1  x  8  x  (1  x)(8  x)  a a/Gpt khi a  3 b/T×m c¸c gt cña a ®Ó pt cã nghiÖm 5-TT §T Y tÕ tphcm-1999) T×m c¸c gt cña m ®Ó pt cã nghiÖm x  1  3  x  (x  1)(3  x)  m 6-(§H Ngo¹i ng÷-2001) x  1  4  x  (x  1)(4  x)  5 D¹ng 5: Pt d¹ng: x  a  b  2a x  b  x  a 2  b  2a x  b  cx  m 2 Trong ®ã a, b,c, m lμ h»ng sè a  0 C¸ch gi¶i : §Æt t  x  b §K: t  0 ®−a pt vÒ d¹ng: t  a  t  a  c(t 2  b)  m 1-(§HSP Vinh-2000) x 1  2 x  2  x 1  2 x  2  1 2-(HV BCVT-2000) x  2 x 1  x  2 x 1  2 3-(§HC§ KD-2005) 2 x  2  2 x 1  x 1  4 x 5 4-(§H Thuû s¶n -2001) x  2  2 x 1  x  2  2 x 1  2 x 3 5- x  2 x 1  x  2 x 1  2 3
  4. WWW.VNMATH.COM xm 6- XÐt pt: x 6 x 9  x 6 x 9  6 a/ Gi¶i pt khi m  23 b/ T×m c¸c gt cña m ®Ó pt cã nghiÖm II-Sö dông Èn phô ®−a pt vÒ Èn phô ®ã ,cßn Èn ban ®Çu coi lμ tham sè: 1- 6x 2  10x  5   4x  1 6x 2  6x  5  0 2-(§H D−îc-1999)  x  3 10  x 2  x 2  x  12 3-(§H D−îc-1997) 2 1  x  x 2  2x  1  x 2  2x  1 4-  4x  1 x  1  2x  2x  1 5- 2 1  x  x  x  1  x  3x  1 2 2 2 2 6-(§HQG-HVNH KA-2001) x 2  3x  1  (x  3) x 2  1 III-Sö dông Èn phô ®−a vÒ hÖ pt: D¹ng 1: Pt D¹ng: x n  a  b n bx  a  x  by  a  0 n C¸ch gi¶i: §Æt y  bx  a khi ®ã ta cã hÖ:  n  y  bx  a  0 n 1-(§HXD-DH HuÕ-1998) x2 1  x 1 2- x  x  5  5 3- x  2002 2002x  2001  2001  0 2 2 4- (§H D−îc-1996) x 3  1  2 3 2x  1 ax  b  r  ux  v   dx  e trong ®ã a, u, r  0 2 D¹ng 2: Pt D¹ng: Vμ u  ar  d, v  br  e uy  v  r  ux  v 2  dx  e C¸ch gi¶i: §Æt uy  v  ax  b khi ®ã ta cã hÖ:  ax  b   uy  v  2 1-(§HC§ KD-2006) 2x  1  x 2  3x  1  0 2- 2x  15  32x 2  32x  20 3- 3x  1  4x  13x  5 2 4- x  5  x 2  4x  3 5- x  2  x  2 2 6- x 1  3  x  x2 4
  5. WWW.VNMATH.COM D¹ng 3: PT D¹ng: n a  f x  m b  f x  c u  v  c C¸ch gi¶i: §Ætu  n a  f  x  , v  m b  f  x  khi ®ã ta cã hÖ:  n u  v  a  b m 1-(§HTCKT-2000) 3 2  x  1 x 1 2- 3 x  34  3 x  3  1 3- x  2  x  1  3 3 4- 4 97  x  4 x  5 5- 18  x  x  1  3 4 4 Ph−¬ng ph¸p 3: Nh©n l−îng liªn hîp: D¹ng 1: Pt D¹ng: f x  a  f x  b  f  x   a  f  x   b C¸ch gi¶i: Nh©n l−îng liªn hîp cña vÕ tr¸i khi ®ã ta cã hÖ:   f  x   a  f  x   a b 1- 4x 2  5x  1  4x 2  5x  7  3 2- 3x 2  5x  1  3x 2  5x  7  2 3- 3- (§H Ngo¹i th−¬ng-1999 ) 3  x  x2  2  x  x2  1 4-(§H Th−¬ng m¹i-1998) x 2  3x  3  x 2  3x  6  3 1 1 5-(HVKTQS-2001)  1 x4 x2 x2 x D¹ng 2: Pt D¹ng: f  x   g  x   m  f  x   g  x  x 3 1-(HVBCVT-2001) 4x  1  3x  2  5 2-(HVKTQS-2001) 3(2  x  2)  2x  x  6 Ph−¬ng ph¸p 4:Ph−¬ng ph¸p ®¸nh gi¸: 1- x  2  4  x  x 2  6x  11 x2  x 1  x  x2 1  x2  x  2 2- 3-(§HQGHN-Ng©n hμng KD-2000) 4x  1  4x 2  1  1 4-(§H N«ng nghiÖp-1999) x 2  2x  5  x  1  2 5
  6. WWW.VNMATH.COM Ph−¬ng ph¸p 5:Ph−¬ng ph¸p ®k cÇn vμ ®ñ: 1-T×m m ®Ó pt sau cã nghiÖm duy nhÊt: x  2x  m 2- T×m m ®Ó pt sau cã nghiÖm duy nhÊt x 5  9 x  m 3- T×m m ®Ó pt sau cã nghiÖm duy nhÊt 4 x  4 1 x  x  1 x  m Ph−¬ng ph¸p 6: Ph−¬ng ph¸p hμm sè (Sö dông ®¹o hμm) 1-(§HC§ KB-2004) - T×m m ®Ó pt sau cã nghiÖm : m   1 x2  1 x2  2  2 1 x4  1 x2  1 x2 2- - T×m m ®Ó c¸c pt sau cã nghiÖm : 1*/ 4  x  mx  m  2 2 2*/ x 1  x  1  5  x  18  3x  2m  1 3--(§HC§ KA-2007) T×m m ®Ó pt sau cã nghiÖm: 3 x 1  m x 1  2 x2 1 4 4-(§HC§KB-2007) CMR m  0 pt sau cã 2nghiÖm pb: x  2x  8  m(x  2) 2 5- 1*/ x  x  5  x  7  x  16  14 2*/ x  1   x 3  4x  5 3*/ 2x  1  x 2  3  4  x 6-(HVAn ninh KA-1997)T×m m ®Ó pt sau cã nghiÖm: x 2  2x  4  x 2  2x  4  m 6
  7. WWW.VNMATH.COM PhÇn II: BÊT Ph−¬ng tr×nh v« tØ Ph−¬ng ph¸p 1: Ph−¬ng ph¸p gi¶i d¹ng c¬ b¶n:  g(x)  0  f (x)  0 g(x)  0   1/ f (x)  g(x)   2/ f (x)  g(x)  f (x)  0  g(x)  0   f (x)  g (x) 2  f (x)  g (x) 2 3/ f (x)  g(x)  h(x) B×nh ph−¬ng hai vÕ bpt 1-(§HQG-1997)  x 2  6x  5  8  2x 2-(§HTCKT Tphcm-1999) 2x  1  8  x 3-(§H LuËt 1998) x  2x 2  1  1  x 4-(§H Má-2000) (x  1)(4  x)  x  2 5-(§H Ngo¹i ng÷) x 5 x 4  x 3 6-(§HC§KA-2005) 5x  1  x  1  2x  4 7-(§H Ngoai th−¬ng-2000) x  3  2x  8  7  x 8-(§H Thuû lîi -2000) x  2  3  x  5  2x 9-(§H An ninh -1999) 5x  1  4x  1  3 x 10-(§HBK -1999) x 1  3  x  4 2(x 2  16) 7x 11-(§HC§ KA-2004)  x 3  x 3 x 3 Ph−¬ng ph¸p 2: Sö dông c¸c phÐp biÕn ®æi t−¬ng ®−¬ng f (x) f (x)  0 f (x)  0 1/ 0 hoÆc  g(x) g(x)  0 g(x)  0 f (x) f (x)  0 f (x)  0 2/ 0 hoÆc  g(x) g(x)  0 g(x)  0 7
  8. WWW.VNMATH.COM B  0 A B  0 A B  0  L−u ý: 1*/ 1  2*/ 1  hay A  0 A  B A  0 2 B B  A  B 2 51  2x  x 2 3x 2  x  4  2 1-(§HTCKT-1998) 1 2-(§HXD) 2 1 x x 1  1  4x 2 2  x  4x  3 3-(§H Ngo¹i ng÷ -1998) 3 4-(§HSP) 2 x x Ph−¬ng ph¸p 2:Nh©n biÓu thøc liªn hîp: x2 2x 2  x  4 2-(§H Má-1999)  x  21   1-(§HSP Vinh-2001) 1   3  9  2x 2 2 1 x 3- 4(x  1)  (2x  10)(1  2 3  2x ) 2 Ph−¬ng ph¸p 3:X¸c ®Þnh nh©n tö chung cña hai vÕ: 1-(§H An ninh -1998) x 2  x  2  x 2  2x  3  x 2  4x  5 2-(§HBK-2000) x 2  3x  2  x 2  6x  5  2x 2  9x  7 3-(§H D−îc -2000) x 2  8x  15  x 2  2x  15  4x 2  18x  18 4-(§H KiÕn tróc -2001) x 2  4x  3  2x 2  3x  1  x  1 Ph−¬ng ph¸p 4: §Æt Èn phô: 1-(§H V¨n ho¸) 5x 2  10x  1  7  x 2  2x 2-(§H D©n lËp ph−¬ng ®«ng -2000) 2x 2  4x  3 3  2x  x 2  1 3-(HV Quan hÖ qt-2000) (x  1)(x  4)  5 x 2  5x  28 4-(§H Y-2001) 2x 2  x 2  5x  6  10x  15 5-(HVNH HCM-1999) x(x  4)  x 2  4x  (x  2) 2  2 3 1 6-§H Th¸i nguyªn -2000) 3 x  2x  7 2 x 2x 8
  9. WWW.VNMATH.COM 2 1 7-(§H Thuû lîi) 4 x  2x  2 x 2x 8-(HV Ng©n hμng 1999) x  2 x 1  x  2 x 1  3 2 9- Cho bpt: 4 (4  x)(2  x)  x  2x  a  18 2 a/ Gi¶i bpt khi a  6 b/T×m a ®Ó bpt nghiÖm ®óng x   2; 4 10-X¸c ®Þnh m ®Ó bpt sau tho¶ m·n trªn ®o¹n ®· chØ ra : (4  x)(6  x)  x 2  2x  m trªn  4;6 Ph−¬ng ph¸p 5: Ph−¬ng ph¸p hμm sè: 1-(§H An ninh-2000) 7x  7  7x  6  2 49x 2  7x  42  181  14x 2- x  x  7  2 x 2  7x  35  2x 3- x  2  x  5  2 x 2  7x  10  5  2x 4- X¸c ®Þnh m ®Ó bpt sau cã nghiÖm: a/ 4x  2  16  4x  m b/ 2x 2  1  m  x 9
  10. WWW.VNMATH.COM PhÇn III: HÖ Ph−¬ng tr×nh A- mét sè hÖ pt bËc hai c¬ b¶n I-hÖ pt ®èi xøng lo¹i 1 f (x; y)  0 1*/ §Þnh nghÜa:  Trong ®ã f (x; y)  f (y; x),g(x; y)  g(y; x) g(x; y)  0 §Æt S  x  y, P  xy §K: S  4P 2 2*/ C¸ch gi¶i: D¹ng 1: Gi¶i ph−¬ng tr×nh  x  y  xy  11  x y  y x  30 1-(§HQG-2000)  2 2-   x  y 2  3(x  y)  28  x x  y y  35  x  y  xy  11  x  y  xy  7 2 2 3-(§HGTVT-2000)  2 4-(§HSP-2000)  4  x y  y x  30  x  y  x y  21 2 4 2 2  1 1  x  y   5 x y 5- (§H Ngo¹i th−¬ng-1997)  x 2  y2  1  1  9  x 2 y2  x 2  y 2  5  x  y  xy  3 6-(§H Ngo¹i th−¬ng -1998)  7-(§HC§KA-2006)   x  x y  y  13  x  1  y  1  4 4 2 2 4 D¹ng 2: T×m §K ®Ó hÖ cã nghiÖm:  x  y  1 1-(§HC§KD-2004) T×m m ®Ó hÖ sau cã nghiÖm:   x x  y y  1  3m  x  y  xy  a 2- T×m a ®Ó hÖ sau cã nghiÖm:  2 x  y  a 2 x  y  x 2  y2  8 3-Cho hÖ pt:   xy(x  1)(y  1)  m a/ Gi¶i hÖ khi m  12 b/ T×m m ®Ó hÖ cã nghiÖm 10
  11. WWW.VNMATH.COM  x  xy  y  m  1 4-Cho hÖ pt:  x y  y x  m 2 2 a/ Gi¶i hÖ khi m=-2 b/ T×m m ®Ó hÖ cã Ýt nhÊt mét nghiÖm  x; y  tho¶ m·n x  0, y  0  x  y  2(1  m) 2 2 5- T×m m ®Ó hÖ cã ®óng hai nghiÖm:   x  y   4 2  1 1  x   y  5 x y 6-(§HC§KD-2007) T×m m ®Ó hÖ sau cã nghiÖm:   x 3  1  y3  1  15m  10  x3 y3 D¹ng 3: T×m §K ®Ó hÖ cã nghiÖm duy nhÊt.  x  y  xy  m  2 1-(HHVKTQS-2000) T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt  2 x y  y x  m  1 2  x  xy  y  2m  1 2-(§HQGHN-1999) T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt:   xy(x  y)  m  m 2  x 2 y  y 2 x  2(m  1) 3- T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt:  2xy  x  y  2(m  2) D¹ng 4: HÖ pt ®èi xøng ba Èn sè : NÕu ba sè x, y, z tho¶ m·n x  y  z  p, xy  yz  zx  q, xyz  r th× chóng lμ nghiÖm cña pt: t  pt  qt  r  0 3 2 1-Gi¶i c¸c hÖ pt sau :  x  y  z  1 x  y  z  1 x  y  z  9   2  a/  xy  yz  zx  4 b/  x  y  z  1 c/  xy  yz  zx  27 2 2  3  3 1 1 1 x  y  z  1 x  y  z  1 3 3 3 3    1  x y z 11
  12. WWW.VNMATH.COM x 2  y2  z2  8 2- Cho hÖ pt:  Gi¶ sö hÖ cã nghiÖm duy nhÊt  xy  yz  zx  4 8 8 CMR:  x, y, z  3 3 II-HÖ ph−¬ng tr×nh ®èi xøng lo¹i 2 f (x; y)  0 1*/ §Þnh nghÜa  trong ®ã : f (x; y)  g(y; x),f (y; x)  g(x; y)  g(x; y)  0 f (x; y)  g(x; y)  0 (x  y)h(x; y)  0 2*/ C¸ch gi¶i: HÖ pt    f (x; y)  0 f (x; y)  0 x  y  0 h(x; y)  0  hay   f (x; y)  0 f (x; y)  0 D¹ng 1: Gi¶i ph−¬ng tr×nh:  y  x  3y  4 x  x 3  3x  8y 1-(§HQGHN-1997)  2-(§HQGHN-1998)   y  3x  4 x  y  3y  8x 3  y  1 3  2x   y x  x 3  1  2y 3-(§HQGHN-1999)  4-(§H Th¸i nguyªn-2001)   y  1  2x 3 2y  1  3  x y  8   7x  y  0 x 1  7  y  4 x2 5-(§H V¨n ho¸-2001)  6-(§H HuÕ-1997)   y 1  7  x  4 7y  x  82  0  y D¹ng 2:T×m ®k ®Ó hÖ cã nghiÖm:  x  1  y  2  m 1-(§HSP Tphcm-2001) T×m m ®Ó hÖ cã nghiÖm:   y  1  x  2  m 12
  13. WWW.VNMATH.COM 2x  y  3  m 2- T×m m ®Ó hÖ cã nghiÖm:  2y  x  3  m D¹ng 3: T×m ®k ®Ó hÖ cã nghiÖm duy nhÊt  x  12  y  a 1-(§HSP-Tphcm-2001) T×m a ®Ó hÖ sau cã nghiÖm duy nhÊt:  (y  1)  x  a 2  xy  x 2  m(y  1) 2- T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt:   xy  y  m(x  1) 2  x 2  y  axy  1 3- T×m a ®Ó hÖ sau cã nghiÖm duy nhÊt:   y  x  axy  1 2 III - HÖ ph−¬ng tr×nh ®¼ng cÊp: */ HÖ pt ®−îc gäi lμ ®¼ng cÊp nÕu mçi pt trong hÖ cã d¹ng ax  bxy  cy d 2 2 */ C¸ch gi¶i: §Æt x  ty */ L−u ý: NÕu (a;b) lμ nghiÖm cña hÖ th× (b;a) còng lμ nghiÖm cña pt. D¹ng 1: Gi¶i ph−¬ng tr×nh: 2x  3xy  y  12  x 2  2xy  3y 2  9 2 2 1-(§HP§-2000)  2-(§HSP Tphcm-2000)  2  x  xy  3y  11 2x  2xy  y  2 2 2 2  x 2 y  xy 2  30 3-(§H Má-1998)   x  y  35 3 3 D¹ng 2: T×m ®k ®Ó hÖ cã nghiÖm, cã nghiÖm duy nhÊt 3x 2  2xy  y 2  11 1-(§HQG HCM-1998) T×m m ®Ó hÖ sau cã nghiÖm :   x  2xy  3y  17  m 2 2  x 2  2xy  3y 2  8 2-(§HAnninh2000)T×m a®Ó hÖ cã nghiÖm:  2x  4xy  5y  a  4a  4a  12  105 2 2 4 3 2  x  mxy  y  m  3m  2 2 2 2 3-T×m m ®Ó hÖ sau cã nghÖm diuy nhÊt:   x  2xy  my  m  4m  3 2 2 2 B- Mét sè ph−¬ng ph¸p gi¶i hÖ pt : 13
  14. WWW.VNMATH.COM Ph−¬ng ph¸p 1:Ph−¬ng ph¸p thÕ: x  y  m  1 1-(§HSP Quy nh¬n -1999) Cho hÖ pt:   x y  y x  2m  m  3 2 2 2 1/ Gi¶i hÖ khi m  3 2/T×m m ®Ó hÖ trªn cã nghiÖm  x  y  3 x  y  x  y  x  y  2 2-(§HC§KB-2002)  3-(HVQY-2001)   x  y  x  y  2  x  y  x  y  4 2 2 2 2 x 2  y2  1 4-(§H HuÕ-1997) T×m k ®Ó hÖ sau cã nghiÖm:  x  y  k  x  my  m 5-(§H Th−¬ng m¹i-2000) Cho hÖ pt:  2 x  y  x  0 2 a. Gi¶I hÖ khi m  1 b. BiÖn luËn sè nghiÖm cña pt c.Khi hÖ cã hai nghiÖm ph©n biÖt (x1 ; y1 );(x 2 ; y 2 ) t×m m ®Ó : A  (x 2  x1 ) 2  (y 2  y1 ) 2 ®¹t gi¸ tri lín nhÊt x  y  1 6-(SP TPHCM-1999) T×m m ®Ó hÖ sau cã 3 nghiÖm ph©n biÖt:  3  x  y  m(x  y) 3 Ph−¬ng ph¸p 2: ph−¬ng ph¸p biÕn ®æi t−¬ng ®−¬ng:  xy  3x  2y  16 1-(§HGTVT TPHCM-1999)  2 HD:nh©n pt ®Çu víi 2 vμcéng víi pt sau  x  y 2  2x  4y  33  x  xy  y  1 x  y  z  7   2 2-(§HTh−¬ng m¹i-1997)  y  yz  z  4 3-(§HBKHN-1995)  x  y  z  21 2 2 z  zx  x  9    xz  y 2  y  xy 2  6x 2 4-(§HSPHN-2000)  HD:chia c¶ hai vÕ cña2pt cho x2 1  x y  5x 2 2 2 Ph−¬ng ph¸p 3: Ph−¬ng ph¸p ®Æt Èn phô: 14
  15. WWW.VNMATH.COM  x 16  xy    x 2 x 3 y 3 ( )  ( y )  12 1-(§H Ngo¹i ng÷-1999)  2-(§H C«ng ®oμn-2000)  y  xy  y  9 (xy) 2  xy  6   x 2  x y 7    1 3-(§H Hμng h¶i-1999)  y x xy (x  0, y  0)   x xy  y xy  78  x  1  y  1  3 4-(§H Thuû s¶n-2000)   x y  1  y x  1  y  1  x  1  6 15
  16. WWW.VNMATH.COM PhÇn:IV HÖ BÊt Ph−¬ng tr×nh A- HÖ bpt mét Èn sè: f1  x   0(1) Cho hÖ:  (I) Gäi S1 ,S2 LÇn l−ît lμ tËp nghiÖm cña (1)&(2) 2f (x)  0(2) S lμ tËp nghiÖm cña (I)  S  S1  S2 T×m m ®Ó hÖ sau cã nghiÖm:  x 2  (m  2)x  2m  0 1-(HVQH Quèc tÕ-1997)   x  (m  7)x  7m  0 2  x 2  2x  1  m  0  x 2  (m  2)x  2m  0 2-(§H Th−¬ng m¹i-1997)  3-   x  (2m  1)x  m  m  0  x  (m  3)x  3m  0 2 2 2  x 2  2mx  0 4-(§H Thuû lîi-1998)   x  1  m  2m  x 2  3x  4  0 5-(§H Th−¬ng m¹i-1998)   x  3x x  m  15m  0 3 2 T×m m ®Ó hÖ sau v« nghiÖm:  x 2  1  0  x 2  6x  5  0  x 2  7x  8  0 1-  2-  3-  (m  x )(x  m)  0  x  2(m  1)x  m  1  0 m x  1  3  (3m  2)x 2 2 2 2 T×m m ®Ó hÖ sau cã nghiÖm duy nhÊt:  x 2  3x  2  0  x  2x  a  0 2 1-  2-   x  6x  m(6  m)  0  x  4x  6a  0 2 2  x 2  (2m  1)x  m 2  m  2  0 3-   x  5x  4  0 4 2 B- HÖ bpt hai Èn sè: T×m a ®Ó hÖ sau cã nghiÖm: 16
  17. WWW.VNMATH.COM  x  y  2  x 2  y 2  2x  2 1-(§HGTVT-2001)  2-   x  y  2x(y  1)  a  2 x  y  a  0 4x  3y  2  0 3-  2 x  y  a 2 T×m a ®Ó hÖ cã nghiÖm duy nhÊt:  x 2  y 2  2x  1  x  y  2xy  m  1 1-  2-  x  y  a  0  x  y  1 17
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2