i 7. Tích pn hàm vô t
199
I 7. TÍCH PHÂN HÀM T
I. TÍCH PHÂN CÓ CHA CÁC CN THC CA BIN C LP

Xét dng c bn thng gp:
( )
p
m n
I x a bx dx
= +
vi
m, n, p
hu t
1.1.
Nu
p
Z
t gi
k
là mu s chung nh nht ca c pn s ti gin biu
th bi
m
n
, khi ó t
x
=
t
k
.
1.2.
Nu
1
m
n
+
Z thì gi
S
là mu s ca
p
t
n s
a bx t
+ =
1.3.
Nu
1m
n
+
+
thì gi
S
bng mu s ca
p
t
n
s
n
a bx
t
x
+
=

t
1
1
j
j
r
r
q
q
I R x, x ,..., x dx
=
vi
r
1
, q
1
,…r
j
, q
j
c s ngun dng.
Gi
k
bi s chung nh nht ca c mu s
q
1
,, q
j
. Khi ó ta có:
1 1
1
j j
j
r
r;...;
q k q k
= =
α
α
. t
(
)
( )
11
1
j
k k k
x t I R t ,t ,....,t kt dt R t a
== =
α
α

Xét
()()
m r
n s
ax b ax b
I R x, ,..., dx
cx d cx d
+ +
=+ +
vi
m, n, …, r, s
nguyên dng
t
ax b
t
cx d
+
=
+
( )
2
t d b ad bc
x ;dx dt
a ct a ct
= =
( )
2
m r
n s
td b ad bc
I R ,t ,...,t dt
a ct a ct
=
Gi
k
bi s chung nh nht ca c s:
{
}
n,...s
. t
t
=
u
k
thì
( )
( )
1 1 1
2 2
k
mrm r k
n s
k
td b ad bc u td b ad bc
I R ,t ,...,t dt R ,u ,...,u ku d u
a ct a ct
a ct a cu
= =
II. C I TP MU MINH HA
1. Dng 1:
( )
p
m n
I = x a + bx dx
vi m, n, p
Q
(
)
1
1 3
4 4
1
x x dx
= +
4
143
xdx
I =
1 + x
1 3
m ; n ; p 1 Z k 4
4 4
= = = =
Chơng II: Nguyên hàmch pn
Trn Phơng
200
t
4
t x
=
4 3
4
x t dx t dt
==
4
4
13 3
3
4
x dx 4t dt 4t
I 4t dt
1 t 1 t
1 x
= = =
+ +
+
( ) ( )
( )
( )
2
2
t 1 t 1
2t 2 dt
t 1 t t 1
+ +
=
+ +
(
)
( )
( )
2 2
2
22
dt t t t 1
2t 2 2 dt
t t 1
t 1 t t 1
+
=
+ + +
()
2
2
2 3
2
dt t dt dt
2t 2 2 2
t 1
t 1
3
1
t2 2
= +
+
+
+
2 3
4 2t 1 2
2t arctg ln 1 t 2 ln 1 t c
3
3 3
= + + + +
43
44
4 2. x 1 2
2 x arctg ln 1 x 2ln 1 x c
3
3 3
= + + + +
( )
( )
2
1 2 1 3
1
x x dx
= +
22
3
xdx
I =
1 + x
1 1
m ; n ; p 2 Z
2 3
= = =
k
=
6
t
6 5
66
t x x t dx t dt
===
. Khi ó:
(
)
( ) ( )
3 5 8
2
2 2
2 2
t 6t dt 6t dt
I
1 t 1 t
= =
+ +
( ) ( )
2
4 2 4 2
2 2 2
2 2
4t 3 4 dt
6 t 2t 3 dt 6 t 2t 3 dt 6
t 1
t 1 t 1
+
= + = + +
+
+ +
=
5 3
t 2t
6 3t 4 arctg t 6J
5 3
+ +
. t
( )
2 2
2
dt dt
I ; J
t 1
t 1
= =
++
Ta có:
( )
2
2 2 2 2 2
2
1 t t t dt
1
I dt td 2
t 1 t 1 t 1 t 1
t 1
= = = +
+ + + +
+
(
)
( ) ( )
2
2 2 2 2 2 2
2 2
t t 1 1 t dt dt t
2 dt 2 2 2I 2J
t 1 t 1 t 1 t 1
t 1 t 1
+
= + = + = +
+ + + +
+ +
( )
22
t t 1
2J I J arctg t c
2
t 1 2 t 1
= + = + +
++
( )
5 3
22
t 2t t 1
I 6 3t 4 arctg t 6 arctg t c
5 3 2
2 t 1
= + + + +
+
5 3
2
5 38 8 8
8
4
3 6t 20t 90t
21arctg t c
5
t 1
6 x 20 x 90 x
3
21arctg x c
5
x 1
+
= + +
+
+
= + +
+
i 7. Tích pn hàm vô t
201
( )
1 2
2 3
1
x x dx
= +
332
xdx
I =
1 + x
2 1 1
1; ; 3
3 2
m
m n p
n
+
= = = =
t
( ) ( )
3 2
3 3
2 2 2 2 2 2
1 1 1 2 6 1
t x t x t x x dx t t dt
= + = + = =
( ) ( ) ( )
2
22
2 4 2
3
23
x dx 3t t 1 dt
I 3 t 1 dt 3 t 2t 1 dt
t
1 x
= = = = +
+
(
)
(
)
(
)
5 2 3 2
5 3 2 2 23 3 3
3 3
t 2t 3t c 1 x 2 1 x 3 1 x c
5 5
= + + = + + + + +
( )
1 3
3 3
2
x x dx
=
43
3 3
dx
I =
x 2 x
1 1
3; 3, 1
3
m
m n p p
n
+
= = = + =
t
3
3
2
x
t
x
=
( )
3 2
3 3 2
3 3 3 2
3
2 2 2 2
11
1
x t dt
t x x dx
x x t t
= = ==
++
( )
2 2
4
2 2
3 3 3
3 3 3
6
3
dx x dx 1 2t dt
I
2
x 2 x 2 x
t 1
t
xt 1
x
= = =
+
+
2
3
2 3
1 t 2 x
t dt c c
2 4 2x
= = + = +
33
5
I = 3x x dx
1 1 1
; 2, 1
3 3
m
m n p p
n
+
= = = + =
t
( )
33 3 2
3 2
3 2 3 2
3
3 3 3 3 9
1 2
1
1
x x x x t dt
t t x x dx
xx x t t
== = ==
++
( )
( )
3 3
3
3
3
52 3
3
1 3x x 9 t dt 3 1
I 3x x dx 2x dx td
2 x 2 2
t 1
t 1
= = = =
+
+
( ) ( )
3
3 3
3t 3 dt 3t 3
I
2 2
t 1
2 t 1 2 t 1
= =
+
+ +
vi
3
1
dt
It
=
+
( )
( )
2
1 1
dt
I
t t t
=
+ +
(
)
( ) ( ) ( )
( )
2 2
d t 1 du
u u 3u 3
t 1 t 1 3 t 1 3
+
= =
+
+ + + +
(
)
(
)
( )
( )
2 2
2
2
1 u 3u 3 u 3u 1 du u 3 du
du
3 3 u
u 3u 3
u u 3u 3
+
= =
+
+
( )
2 2
1 du 1 2u 3 du 3 du
3 u 2 2
u 3u 3 u 3u 3
= +
+ +
Chơng II: Nguyên hàmch pn
Trn Phơng
202
(
)
()
2
2 2
2
2
1 du 1 d u 3u 3 3 du
3 u 2 2
3
u 3u 3 3
u2
4
1 1 u 2u 3
ln 3arctg c
3 2 u 3u 3 3
+
= +
+
+
= + +
+
( )
( ) ( )
( )
2
2
1 t 1 1 2 t 1 3
ln arctg c
63 3
t 1 3 t 1 3
+ +
= + +
+ + +
2
2
1 t 2t 1 1 2t 1
ln arctg c
62 3 3t t 1
+ +
= + +
+
( )
2
52
3
3t 3 1 t 2t 1 1 2t 1
I ln arctg
2 6
2 3 3
t t 1
2 t 1
+ +
= +
+
+
( )
3
3 3 3
3 3 3
x 3x x 1 x 3x x x 3 2 3x x x
ln arctg c
2 4 3 4 x 3
+
= +
( )
1 2
4 2
1
x x dx
= +
64 2
dx
I =
x 1 + x
1 m 1
m 4, n 2, p p 2 Z
2 n
+
= = = + =
t
( )
2 2
2 2
2 2 2 2
2
1 1 1 1
11
1
x x t dt
t t x x dx
xx x t t
+ +
== = + ==
( )
( )
( )
3
2
2
62
4 2 2 2
6
dx x dx t 1 t dt
I t 1 dt
t
x 1 x 1 x t 1
x
x
= = = =
+ +
( ) ( )
3
3 2 2 2 2
3 3
t 1 x 1 x 2x 1 1 x
t c c c
3 x
3x 3x
+ + +
= + + = + + = +
( )
( )
41
1 1 2
7
1
1
x x dx
= +
4
1
dx
I =
x 1 + x
1
m 1, n , p 1 Z
2
= = =
t
22
t x t x dx t dt
===
( ) ( )
( )
( )
2 2 2
72
1 1 1
2t dt dt 1 t t
I 2 2 dt
t 1 t t 1 t
t 1 t
+
= = =
+ +
+
( )
( )
22
1
1
1 1 4
2 dt 2 ln t ln t 1 2 ln 2 ln 3 ln1 ln 2 2 ln
t t 1 3
= = + = + =
+
i 7. Tích pn hàm vô t
203
2. Dng 2:
j
1
j
1
r
r
q
q
I = R x, x , ..., x dx
( )
1 2
1 3
1
1
x
dx
x x
=
+
132
x 1
I = dx
x + x
. Gi
k
=
BSCNN
(2, 3)
=
6
t
6 5
66
t x x t dx t dt
===
(
)
3 4
5 2
16 4 2 2
t 1 6 t t t 1
I 6t dt dt 6 t 1 dt
t t t 1 t 1
= = =
+ + +
3 2 6 3
2t 6t 3ln 1 t 6arctg t c 2 x 6 x 3ln 1 x arctg x c
= + + + = + + +
( ) ( )
1 4 1 8
4
1
=
+
8
4
24
x x
I = dx
x 1 + x
x x
dx
x x
. Gi
k
=
BSCNN
(4, 8)
=
8
t
8 7
88
t x x t dx t dt
===
( )
2
7
22
8 2
t t t 1
I 8t dt 8 dt
t 1
t t 1
= =
+
+
28
4
4 ln 1 t 8 arctg t c 4 ln 1 x 8arctg x c
= + + = + +
( )
( )
1 2
1 3
1 1
1 1
+
=
+ +
33
1 1 + x
I = dx
1 + 1 + x
x
dx
x
. Gi
k
=
BSCNN
(2, 3)
=
6
t
6 5
61 1 6
t x x t dx t dt
= + = =
3
5 6 4 3 2
32 2
3
1 1 x 1 t t 1
I dx 6t dt 6 t t t t t 1 dt
1 1 x 1 t t 1
+
= = = + + + +
+ + + +
75432
2
t t t t t 1
6 t ln t 1 arctg t c
7 5 4 3 2 2
= + + + + +
( ) ( ) ( )
7 5 4
6 6 6
6 3 6
6 6 4
1 x 1 x 1 x 2 1 x
7 5 5
6 1 x 3ln 1 x 1 arctg 1 x c
= + + + + + +
+ + + + + + + +
5
8
33
1
dx
I =
x 1 + x
. t
3 2
33
t x t x dx t dt
===