
11/29/2012
1
HỒI QUY ĐA BIẾN:
KIỂM ĐỊNH GIẢ THUYẾT VÀ LỰA CHỌN MÔ HÌNH
GV : Đinh Công Khải – FETP
Môn: Các Phương Pháp Định Lượng – MPP5
Giả thiết về qui luật chuẩn
Giả thiết ui ~ N(0, σ2)
Các tính chất của ước lượng OLS trong hồi qui đa biến theo giả thiết phân
phối chuẩn
Ước lượng trong hàm hồi qui với 2 biến độc lập
Yi = β1 + β2 X2i+ β3 X3i+ ui
),(~
ˆ2
ˆk
kk N
3
ˆ
ˆ
-
)
ˆ
var(
-
)
ˆ
var(
2
2
2
32i
2
3i
2
2
2
2i
3
2
2
32i
2
3i
2
2
2
3i
2
n
u
xxxx
x
xxxx
x
i
ii
ii
2
ˆk

11/29/2012
2
Kiểm định hệ số hồi qui riêng
Phương pháp kiểm định ý nghĩa: Kiểm định t
Kiểm định 2 phía
H0: βk = a
Ha: βk ≠ a
Trị kiểm định thống kê
k
s
tkk
ˆ
ˆ
Kiểm định hệ số hồi qui riêng
Qui tắc bác bỏ
Bác bỏ nếu |t| > tα/2 với t α/2 dựa trên phân phối t với bậc tự do là (n-K)
Hoặc pvalue < α.
Kiểm định 1 phía
H0: βk ≥ a H0: βk ≤ a
Ha: βk < a Ha: βk > a
Qui tắc bác bỏ
Bác bỏ nếu t < - tα t > tα
Hoặc pvalue < α pvalue < α

11/29/2012
3
Kiểm định hệ số hồi qui riêng
Phương pháp kiểm định dựa trên khoảng tin cậy (1-α)100%
Qui tắc bác bỏ
Bác bỏ H0 nếu 0 không nằm trong khoảng tin cậy (1-α)100% của βk
k
st
k
ˆ
2/
ˆ
Kiểm định ý nghĩa thống kê của các hệ số hồi qui
Phương pháp kiểm định ý nghĩa: Kiểm định F (Kiểm định Wald)
Giả thuyết
H0: β2 = β3 = ….. = βK = 0
Ha: Ít nhất có một tham số βk khác 0
Trị kiểm định F:
Qui tắc bác bỏ: Bác bỏ H0 nếu F ≥ F (K-1, n-K,α) hoặc pvalue ≤ α
),,1(
~
)/(
)1/(
KnK
F
KnRSS
KESS
MSR
MSE
F

11/29/2012
4
Kiểm định ý nghĩa thống kê của các hệ số hồi qui
Mối quan hệ giữa R2 và F
Khi R2 càng lớn thì F càng lớn.
Kiểm định F là thước đo ý nghĩa chung của mô hình hồi qui và cũng là kiểm
định ý nghĩa của R2.
Kiểm định H0: β2 = β3 = ….. = βK = 0 tương đương kiểm định H0 : R2 = 0
)/()1(
)1/(
2
2
KnR
KR
F
Lựa chọn mô hình
Phương pháp “từ tổng quát đến đơn giản” (Hendry/LSE)
Sử dụng các kiểm định để loại bỏ biến
Kiểm tra xem dấu của các hệ số hồi qui ước lượng có đúng kỳ vọng không
Sử dụng kiểm định t và kiểm định Wald
Sử dụng R2 điều chỉnh

11/29/2012
5
Lựa chọn mô hình
Phương pháp “từ đơn giản đến tổng quát”
Liệu đưa thêm 1 hay nhiều biến giải thích có làm tăng mức ý nghĩa chung
của mô hình hay không?
Giả sử chúng ta có một mô hình với m biến (mô hình cũ)
(R): Yi = β1 + β2 X2i+…+ βm Xmi+ ui
Sau đó chúng ta bổ sung thêm (K – m) biến giải thích (mô hình mới)
(U): Yi = β1 + β2 X2i+…+ βm Xmi+ βm+1 Xm+1+…+ βK XKi + vi
Lựa chọn mô hình
Dùng kiểm định Wald
H0: βm+1 = βm+2 = ….. = βK = 0
Ha: Ít nhất có một tham số βk ở trên khác 0
Trị kiểm định
Qui luật bác bỏ H0: F > F(α, K-m, n-K) hoặc pvalue < α bổ sung các
biến vào mô hình làm tăng một cách ý nghĩa ESS và R2.
)/()1(
)/()(
)/(
)/(][
2
22
KnR
mKRR
KnRSS
mKESSESS
F
U
RU
U
RU