1-1

Chương 11 HỒI QUY VÀ TƯƠNG QUAN ĐƠN BIẾN

1-2

MỤC TIÊU CỦA CHƯƠNG ● Sau khi học xong chương này, người học sẽ ● Nói được phạm vi ứng dụng của phương pháp phân tích hồi quy và tương quan đơn biến ● Biết cách thực hiện một phân tích hồi quy dựa trên dữ liệu mẫu ● Nói được những điều kiện và giả định cần thiết khi phân tích hồi quy ● Biết được cách tính và ý nghĩa của hệ số tương quan Pearson và hệ số tương quan hạng Spearman

1-3

CÁC NỘI DUNG CHÍNH ● 11.1 LÀM QUEN VỚI HỒI QUY ● 11.2 MÔ HÌNH HỒI QUY TUYẾN TÍNH ĐƠN ● 11.3 TƯƠNG QUAN TUYẾN TÍNH ● 11.4 TƯƠNG QUAN GIỮA CÁC BIẾN ĐỊNH TÍNH

1-4

11.1 Làm quen với hồi quy ● 11.1.1 Khái niệm hồi quy ● Regression, Regression to mediocrity: quy các điểm DL đã biết về một đường lý thuyết ● Đ/nghĩa của TK: ● NC mối liên hệ phụ thuộc giữa một biến phụ thuộc (biến đầu ra) và một hay nhiều biến độc lập (biến đầu vào), ● nhằm ước tính hoặc dự báo giá trị trung bình tổng thể của biến phụ thuộc dựa trên các giá trị biết trước của biến độc lập ● Hồi quy đơn biến (simple regression): 1 biến PT và 1 biến ĐL, DL định lượng ● VD: ● KQ học tập = f(thời gian tự học) ● KQ học tập = f(thời gian tự học, yêu thích chuyên ngành) ● Lượng tiêu thụ = f(P1, P2, P3, P4) ● Chất lượng sản phẩm = f(NVL, thiết bị, công nghệ, con người, quản lý)

1-5

11.1.2 Phân biệt liên hệ TK và liên hệ hàm số khi phân tích hồi quy ● Liên hệ hàm số: Y = b0 + b1X ● Với 1 giá trị của X, có 1 giá trị xác định và duy nhất của Y ● Liên hệ TK: Y = b0 + b1.X ● X = thời gian tự học; Y = điểm GPA ● DL về X: dữ liệu mẫu ● Một X, có thể có nhiều Y ● DL mẫu →xác định đường HQ mẫu → dự đoán đường HQ tổng thể

1-6

1-7

11.1.3 Quy ước về ký hiệu và tên gọi ● Biến số: Y = b0 + b1.X1 + b2X2 ● Biến độc lập, biến đầu vào, biến giải thích: X1, X2 ● Biến phụ thuộc, biến đầu ra, biến được giải thích: Y ● Xki: giá trị của quan sát thứ i của biến Xk. ● b0, b1, b2: các hệ số của phương trình hồi quy ● Hồi quy đơn biến và hồi quy đa biến (HQ bội) ● HQ đơn biến (simple regression): 1 biến ĐL ● HQ đa biến (multiple regression): nhiều biến ĐL

1-8

11.1.4 Các dạng liên hệ giữa biến độc lập và biến phụ thuộc

1-9

11.2 Mô hình hồi quy tuyến tính đơn ● 11.2.1 Mở đầu ● NC mối liên hệ giữa thu nhập (X) và chi tiêu (Y) ● Lấy mẫu n hộ gia đình ● Đường hồi quy lý thuyết ● E(Y|Xi) = b0 + b1.Xi ● Yi = b0 + b1Xi + ei ● b0: hệ số tung độ gốc (hệ số chặn) ● b1: hệ số dốc (hệ số góc) ● ei: sai số, thể hiện yếu tố nhiễu

1-10

11.2.2 Các giả định liên quan đến yếu tố nhiễu ● Các ei tại mỗi Xi có phân phối bình thường ● Không có sự tương quan giữa các nhiễu, hay các ei độc lập với nhau

1-11

11.2.3 Ý nghĩa và cách xác định các hệ số hồi quy ● b1: hệ số độ dốc, đo lường lượng thay đổi TB trong biến phụ thuộc Y khi X thay đổi 1 đơn vị. ● b0: hệ số tung độ gốc cho biết giá trị của Y khi X = 0, có thể coi là ảnh hưởng TB của các yếu tố khác mà không có mặt trong mô hình

1-12

Dữ liệu mẫu Bảng 11.1

Stt Số năm Doanh số

1 3 487

2 5 445

3 2 272

4 8 641

5 2 187

6 6 440

7 7 346

8 1 238

9 4 312

10 2 269

11 9 655

12 6 563

1-13

Xác định các hệ số hồi quy ● Phương pháp Cực tiểu hoá tổng bình phương của các phần dư

1-14

11.2.4 Tính toán các kết quả hồi quy bằng Excel ● Vẽ đồ thị Scatter Chart y = 49,91x + 175,83 R² = 0,6931

700

600

500

400

300

200

100

0

0

2

4

6

8

10

1-15

● Sử dụng Data Analysis

1-16

11.2.6 Đo lường biến thiên bằng Hệ số xác định ● Hệ số xác định (Coefficient of Determination)

1-17

1-18

11.2.5 Vấn đề cần chú ý khi dự đoán với mô hình hồi quy ● Chỉ nên dự đoán với những giá trị Xi nằm giữa Xmin và Xmax, hoặc không quá xa Xmin và Xmax ● Lý do: với những giá trị Xi nằm càng xa Xtb, thì sai số khi ước lượng Yi càng lớn.

1-19

11.2.8 Suy diễn TK về hệ số độ dốc ● 11.2.8.1 Định lý Gauss-Markov ● Giả định: PP của Y là bình thường thì PP của b0 và b1 cũng là PP bình thường ● Đ/lý Gauss-Markov ● Trong các ƯL tuyến tính không chệch cho hệ số hồi quy tổng thể, ƯL tìm được bằng PP bình phương bé nhất có PS cực tiểu.

1-20

11.2.8.2 Khoảng tin cậy cho hệ số độ dốc

1-21

11.2.8.3 KĐ ý nghĩa của hệ số độ dốc ● Cặp giả thuyết KĐ ● Chỉ tiêu KĐ tính: t = b1/sb1 ● Quy tắc bác bỏ H0: ● TD: ● b1 = 49,91 ● sb1 = 10,5021 ● t = 4,7524 ● t tra bảng: tn-2;α/2 = t10; 0,025=2,228 ● Bác bỏ H0.

1-22

1-23

11.2.9 Phân tích phần dư ● 11.2.9.1 Kiểm tra tính đúng đắn của mô hình HQTT

● KT mối liên hệ tuyến tính:

● Vẽ đồ thị phần dư theo biến độc lập X: e = f(X) ● Nếu các điểm không tạo thành một hình mẫu cụ thể

nào thì quan hệ HQTT là đúng đắn

1-24

11.2.9.2 KT sự vi phạm giả định PS bằng nhau ● Phương pháp đồ thị phần dư (e) theo X ● Nếu phần dư tăng dần khi X tăng lên thì có nghĩa là phương sai của phần dư đã thay đổi→vi phạm ● Phương pháp Kiểm định Park

1-25

11.2.9.3 KT giả định PP bình thường của phần dư ● Vẽ đồ thị xác suất bình thường (Normal Probability Plot): e = e(z) ● Sử dụng Excel

1-26

1-27

11.2.9.4 KT tính độc lập của phần dư ● P.pháp đồ thị: vẽ đồ thị phần dư theo trật tự các giá trị thu được theo thời gian. Nếu không xuất hiện một hình mẫu xác định nào → có thể KL là các phần dư độc lập với nhau. ● KĐ Durbin-Watson: Chỉ tiêu KĐ D

1-28

1-29

Durbin-Watson Table

1-30

11.2.10 Sử dụng PT hồi quy để dự đoán giá trị TB và giá trị cá biệt của Y ● Giá trị TB

● Giá trị cá biệt

1-31

11.3 Tương quan tuyến tính ● 11.3.1 Hệ số tương quan tổng thể rho ● 11.3.2 Hệ số tương quan mẫu rXY

1-32

Giá trị và ý nghĩa của hệ số tương quan: ● r < 0: có mối liên hệ tỷ lệ nghịch ● r > 0: có mối liên hệ tỷ lệ thuận ● |r| > 0,8 : TQTT rất mạnh ● |r| = 0,6 – 0,8: TQTT mạnh ● |r| = 0,4 – 0,6: TQTT vừa phải ● |r| = 0,2 – 0,4: TQTT yếu ● |r| < 0,2 : TQTT rất yếu

1-33

KĐ ý nghĩa của hệ số tương quan tuyến tính ● Cặp giả thuyết KĐ ● Chỉ tiêu KĐ ● Quy tắc bác bỏ H0

● Bác bỏ H0 nếu |t| > tn-2;α/2

● VD: Trang 345

1-34

11.4 Tương quan giữa các biến định tính ● 11.4.1 Hệ số TQ hạng Spearman ● 11.4.2 Hệ số Kendall Tau ● 11.4.3 Hệ số tq đối với DL thứ bậc trong DL đã phân nhóm (tau c, gamma, dyx và dxy)

1-35

KĐ theo hệ số tương quan hạng Spearman rS ● Biến X1 và X2 có dữ liệu thứ bậc (hoặc DL khoảng, nhưng đã biến thành DL thứ bậc bằng cách xếp hạng trong từng mẫu), mẫu n cặp quan sát ● Tính chênh lệch hạng di = x1i – x2i (i = 1, 2, … n) ● Tính hệ số tương quan hạng rS ● H0: Không có liên hệ giữa 2 biến (Hệ số tương quan hạng của tổng thể = 0) ● Nếu số trường hợp có di = 0 nhiều, thì cần thêm một hệ số hiệu chỉnh ● Nếu n > 10, PP của hệ số TQ hạng trên mẫu xấp xỉ PP bình thường với độ lệch chuẩn là Chỉ tiêu KĐ sẽ là z