intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Tín hiệu và hệ thống: Lecture 2 – Trần Quang Việt

Chia sẻ: Lộ Minh | Ngày: | Loại File: PDF | Số trang:16

40
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Lecture 2 cung cấp cho người học những kiến thức cơ bản về hệ thống. Nội dung chính được trình bày trong chương này gồm có: Hệ thống liên tục và hệ thống rời rạc, ví dụ đơn giản về hệ thống, kết nối bên trong hệ thống, các tính chất cơ bản của hệ thống. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Tín hiệu và hệ thống: Lecture 2 – Trần Quang Việt

  1. Ch-1: Cơ bản về tín hiệu và hệ thống Lecture-2 1.2. Cơ bản về hệ thống Signals & Systems – FEEE, HCMUT
  2. 1.2. Cơ bản về hệ thống 1.2.1. Hệ thống liên tục và hệ thống rời rạc 1.2.2. Ví dụ đơn giản về hệ thống 1.2.3. Kết nối bên trong hệ thống 1.2.4. Các tính chất cơ bản của hệ thống Signals & Systems – FEEE, HCMUT
  3. 1.2.1. Hệ thống liên tục và hệ thống rời rạc  Định nghĩa: hệ thống “xử lý” các tín hiệu vào và “tạo” các tín hiệu đầu ra Tín hiệu vào System Tín hiệu ra Hardware Software (electrical, (Algorithms) mechanical, hydraulic,…)  Hệ thống liên tục: Tín hiệu vào liên tục  tín hiệu ra liên tục  Hệ thống rời rạc: Tín hiệu vào rời rạc  tín hiệu ra rời rạc  Mô hình toán: Mỗi hệ thống đều được mô tả bởi 1 phưong trình toán mô tả quan hệ giữa ngõ ra với ngõ vào Signals & Systems – FEEE, HCMUT
  4. 1.2.2. Ví dụ đơn giản về hệ thống  Ví dụ 1: mạch điện i(t) R + e(t) du c (t) uc(t) e(t) C uc(t) RC dt u c (t)=e(t) -  Ví dụ 2: cơ học x(t) d 2 y(t) dy(t) dx(t) y(t) m 2 +b +ky(t)=b +kx(t) dt dt dt Signals & Systems – FEEE, HCMUT
  5. 1.2.2. Ví dụ đơn giản về hệ thống  Ví dụ 2: Hệ thống tính số dư trong tài khoản ngân hàng hàng tháng  f(n): tổng tiền nạp vào tài khoản trong tháng thứ n  y(n): số dư tài khoản tháng thứ n  lãi suất tiết kiệm là 1% hàng tháng f(n) y(n) y(n)=1.01y(n 1)+f(n) Signals & Systems – FEEE, HCMUT
  6. 1.2.3. Kết nối bên trong hệ thống Các hệ thống trên thực tế được tạo thành từ các hệ thống con thông qua các dạng kết nối như sau:  Ghép liên tầng: Input System 1 System 2 Output  Ghép song song: System 1 Input + Output System 2 Signals & Systems – FEEE, HCMUT
  7. 1.2.3. Kết nối bên trong hệ thống  Ghép hồi tiếp: Input + System 1 Output System 2 Signals & Systems – FEEE, HCMUT
  8. 1.2.4. Các tính chất cơ bản của hệ thống a) Tính có nhớ b) Tính khả nghịch c) Tính nhân quả d) Tính ổn định e) Tính bất biến f) Tính tuyến tính Signals & Systems – FEEE, HCMUT
  9. a) Tính có nhớ  Hệ thống không nhớ: ngõ ra không phụ thuộc vào ngõ vào trong quá khứ (ngỏ vào trước thời điểm hiện tại đang xét). Ví dụ, mạch thuần trở: u(t)=Ri(t)  Hệ thống có nhớ: Ngõ ra phụ thuộc vào ngõ vào trong quá khứ. Ví dụ, mạch điện có phần tử L, C: t 1 u C (t)= C - iC (t)dt t 1 i L (t)= L - u L (t)dt Signals & Systems – FEEE, HCMUT
  10. b) Tính khả nghịch  Hệ thống khả nghịch: ngỏ vào phân biệt  ngỏ ra phân biệt. Khi đó tồn tại một hệ thống nghịch đảo để khi ghép liên tầng hai hệ thống thuận và nghịch tạo thành hệ thống đơn vị. Ví dụ: y(t) f(t) y(t)=2f(t) w(t)= 12 y(t) w(t)=f(t)  Hệ thống không khả nghịch: không phải là hệ thống khả nghịch. Ví dụ: y(t)=f 2 (t) Signals & Systems – FEEE, HCMUT
  11. c) Tính nhân quả  Hệ thống nhân quả: ngỏ ra không phụ thuộc vào ngõ vào trong tương lai (ngỏ vào sau thời điểm hiện tại đang xét). Ví dụ: y(t)=f(t)+f(t 2)  Hệ thống không nhân quả: ngỏ ra phụ thuộc vào ngỏ vào tương lai. Ví dụ: f(t) y(t) 1 1 y(t)=f(t+2)+f(t 2) t t 1 -2 -1 1 2 3 1 y (t 2) ? Nếu chấp nhận t trễ có thể thực 0 1 2 3 4 5 hiện được!!! Signals & Systems – FEEE, HCMUT
  12. d) Tính ổn định  Hệ thống ổn định: ngỏ vào bị chặn  ngỏ ra bị chặn (BIBO). Ví dụ: y(t)=ef(t) Giả sử: |f(t)| B |y(t)| e B HT ổn định  Hệ thống không ổn định: ngõ vào bị chặn  ngỏ ra không bị chặn Ví dụ: y(t)=tf(t) Giả sử: |f(t)| B |y(t)| | tf(t) | B | t | |y(t )| HT không ổn định Signals & Systems – FEEE, HCMUT
  13. e) Tính bất biến  Hệ thống bất biến: f(t) system y(t) f(t-t0) system y(t-t0) For all t0 f(t) y(t) f(t-t0) y(t-t0) t t t t t0 t0 Ví dụ: y(t)=sin(|f(t)|) y(t t 0 )=sin(|f(t t 0 )|) f1 (t)=f(t t 0 ) y1 (t)=sin(|f(t t 0 )|)=y(t t 0 ) HT BB  Hệ thống thay đổi theo thời gian: không phải là hệ thống bất biến Ví dụ: y(t)=f(2t) y(t t 0 )=f(2(t t 0 ))=f(2t 2t 0 ) f1 (t)=f(t t 0 ) y1 (t)=f(2t t 0 ) y(t t 0 ) HT TĐ Signals & Systems – FEEE, HCMUT
  14. f) Tính tuyến tính  Hệ thống tuyến tính: f1(t) system y1(t) k1f1(t)+k2f2(t) system k1y1(t)+k2y2(t) f2(t) system y2(t) y1 (t)=tf1 (t) Ví dụ: (a) y(t)=tf(t) y 2 (t)=tf 2 (t) f(t)=k1f1 (t)+k 2f 2 (t) y(t)=k1tf1 (t)+k 2 tf 2 (t)=k1y1 (t)+k 2 y2 (t) HT tuyến tính Signals & Systems – FEEE, HCMUT
  15. f) Tính tuyến tính dy1 (t) +3y1 (t)=f1 (t) dy(t) dt (b) +3y(t)=f(t) dt dy 2 (t) +3y 2 (t)=f 2 (t) dt d[k1y1 (t)+k 2 y 2 (t)] 3[k1y1 (t)+k 2 y 2 (t)] [k1f1 (t)+k 2f 2 (t)] dt f(t) k1f1 (t)+k 2f 2 (t) Thì: y(t) k1y1 (t)+k 2 y2 (t) HT tuyến tính Signals & Systems – FEEE, HCMUT
  16. f) Tính tuyến tính  Hệ thống phi tuyến: không phải là hệ thống tuyến tính 2 Ví dụ: y(t)=f (t) y1 (t)=f12 (t) y 2 (t)=f 22 (t) 2 f(t)=k1f1 (t)+k 2f 2 (t) Thì: y(t)= k1f1 (t)+k 2f 2 (t) y(t) k1y1 (t)+k 2 y2 (t) HT phi tuyến Signals & Systems – FEEE, HCMUT
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2