intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Chuyên đề: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

Chia sẻ: Huỳnh Văn Phước | Ngày: | Loại File: PDF | Số trang:9

1.176
lượt xem
336
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'chuyên đề: một số phương pháp chứng minh bất đẳng thức', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Chuyên đề: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC

  1. Chuyên đề: MỘT SỐ PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC Giáo viên biên soạn: HUỲNH CHÍ HÀO. Sáng lập chihao.info Đơn vị: THPT Thành phố Cao Lãnh Tỉnh Đồng Tháp - Ngày soạn 28/04/2009. Phương pháp 1: SỬ DỤNG BẤT ĐẲNG THỨC CÔ-SI Kỹ thuật 1 : Tách, ghép và phân nhóm Bài 1: Cho a, b,c là ba số dương thỏa mãn điều kiện a + b + c = 3 Chứng minh rằng: a3 b3 c3 3 + + ≥ (1) (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4 Hướng dẫn: + Dự đoán dấu "=" xảy ra. + Sử dụng giả thiết biến đổi bđt về bđt đồng bậc. + Sử dụng kỹ thuật tách ghép và phân nhóm. Bổ sung thêm một số số hạng để sau khi sử dụng bđt Cô-si ta khử được mẫu số của biểu thức phân thức. Bài giải: Sử dụng giả thiết a + b + c = 3 để đưa bđt về bđt đồng bậc 1 ở hai vế a3 b3 c3 (a + b + c) (1) ⇔ + + ≥ (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4 Áp dụng bất đẳng thức Cô-si ta có: a3 a+b a+c ⎛ a3 ⎞ ⎛ a + b ⎞ ⎛ a + c ⎞ 3a ⎟⎜ + + ≥ 33 ⎜ ⎟ ⎟⎜ ⎜ (a + b ) ( a + c ) ⎠ ⎝ 8 ⎠ ⎜ 8 ⎠ = 4 ⎜ ⎟⎜ ⎟⎝ ⎟ ⎟ ⎟ (a + b ) ( a + c ) 8 8 ⎜ ⎝ ⎟⎜ Chứng minh tương tự ta cũng được: b3 b+c b+a ⎛ b3 ⎞ ⎛ b + c ⎞⎛ b + a ⎞ 3b ⎟ + + ⎜ ≥ 33 ⎜ ⎟⎜ ⎟⎜ ⎟ (b + c)(b + a ) 8 8 ⎜(b + c)(b + a )⎠ ⎜ 8 ⎠⎝ 8 ⎠ = 4 ⎜ ⎝ ⎟⎜ ⎟⎝ ⎟⎜ ⎟ ⎟ ⎟ c3 c+a c+b ⎛ c3 ⎞ ⎛ c + a ⎞ ⎛ c + b ⎞ 3c ⎟⎜ + + ≥ 33 ⎜ ⎟ ⎟⎜ ⎜(c + a )(c + b)⎠ ⎜ 8 ⎠⎝ 8 ⎠ = 4 ⎜ ⎟⎝ ⎟⎜ ⎟ ⎟ ⎟ ( c + a ) (c + b) 8 8 ⎜ ⎝ ⎟ Cộng vế với vế các bđt trên và biến đổi ta được bđt: a3 b3 c3 a+b+c 3 + + ≥ = (đpcm) (a + b)(a + c) (b + c)(b + a ) (c + a )(c + b) 4 4 Đẳng thức xảy ra ⇔ a = b = c = 1 Bài tập tương tự: Bài 1: Cho a, b,c là ba số dương thỏa mãn điều kiện abc = 1 Chứng minh rằng: a3 b3 c3 3 + + ≥ (1 + b)(1 + c) (1 + c)(1 + a ) (1 + a )(1 + b) 4 Bài 2:
  2. Cho a, b,c là ba số dương thỏa mãn điều kiện ab + bc + ca = abc Chứng minh rằng: a2 b2 c2 a+b+c + + ≥ a + bc b + ca c + ab 4 Bài 2: Cho a, b,c là ba số dương thỏa mãn điều kiện a + b + c = 3 Chứng minh rằng: a3 b3 c3 + + ≥ 1 (1) b (2c + a ) c (2a + b) a (2b + c) Hướng dẫn: + Dự đoán dấu "=" xảy ra. + Sử dụng giả thiết biến đổi bđt về bđt đồng bậc. + Sử dụng kỹ thuật tách ghép và phân nhóm. Bổ sung thêm một số số hạng để sau khi sử dụng bđt Cô-si ta khử được mẫu số của biểu thức phân thức. Bài giải: Sử dụng giả thiết a + b + c = 3 để đưa bđt về bđt đồng bậc 1 ở hai vế a3 b3 c3 a+b+c (1) ⇔ + + ≥ b (2c + a ) c (2a + b) a (2b + c) 3 Áp dụng bất đẳng thức Cô-si ta có: 9a 3 ⎛ 9a 3 ⎞ ⎟ (3b)(2c + a ) = 9a + 3b + (2c + a ) ≥ 3 3 ⎜ ⎜ ⎟ ⎟ b (2c + a ) ⎝ ⎟ ⎜ b (2c + a )⎠ Chứng minh tương tự ta cũng được: 9b3 ⎛ 9b3 ⎞ ⎟ + 3c + (2a + b) ≥ 3 3 ⎜ ⎟ ⎜ c (2a + b)⎠ (3c)(2a + b) = 9b ⎜ ⎟ c (2a + b) ⎜ ⎝ ⎟ 9c 3 ⎛ 9c3 ⎞ ⎟ + 3a + (2b + c) ≥ 3 3 ⎜ ⎟ ⎜ a (2b + c)⎠ (3a )(2b + c) = 9c ⎜ ⎟ a (2b + c) ⎜ ⎝ ⎟ Cộng vế với vế các bđt trên ta được bđt: ⎡ a3 b3 c3 ⎤ 9⎢ + + ⎥ + 6 (a + b + c) ≥ 9 (a + b + c) ⎢ b (2c + a ) c (2a + b) a (2b + c) ⎥ ⎣ ⎦ a3 b3 c3 a+b+c ⇒ + + ≥ =1 b (2c + a ) c (2a + b) a (2b + c) 3 Đẳng thức xảy ra ⇔ a = b = c = 1 Bài 3: Cho a, b,c là ba số dương thỏa mãn điều kiện a 2 + b2 + c2 = 1 Chứng minh rằng: a3 b3 c3 1 + + ≥ b + 2c c + 2a a + 2b 3 Bài giải: Sử dụng giả thiết a 2 + b2 + c2 = 1 để đưa bđt về bđt đồng bậc 2 ở hai vế
  3. a3 b3 c3 a 2 + b2 + c 2 (1) ⇔ + + ≥ b + 2c c + 2a a + 2b 3 Áp dụng bất đẳng thức Cô-si ta có: 9a 3 9a 3 + a (b + 2c) ≥ 2 .a (b + 2c) = 6a 2 (b + 2c) b + 2c Chứng minh tương tự ta cũng được: 9b 3 9b3 + b (c + 2a ) ≥ 2 .b (c + 2a ) = 6b2 (c + 2a ) c + 2a 9c3 9c3 + c (a + 2b) ≥ 2 .c (a + 2ab) = 6c2 (a + 2b) (a + 2b) Cộng vế với vế các bđt trên ta được bđt: ⎛ a3 b3 c3 ⎞⎟ + 3 (ab + bc + ca ) ≥ 6 (a 2 + b2 + c2 ) 9⎜⎜ + + ⎟ ⎟ ⎜ b + 2c c + 2a a + 2b ⎠ ⎝ ⎛ a3 b3 c3 ⎞ ⎟ ≥ 6 (a 2 + b2 + c2 ) − 3 (ab + bc + ca ) ≥ 3 (a 2 + b2 + c2 ) ⇒ 9⎜ ⎜ + + ⎟ ⎟ ⎜ b + 2c c + 2a a + 2b ⎠ ⎝ a3 b3 c3 a 2 + b2 + c 2 1 ⇒ + + ≥ = b + 2c c + 2a a + 2b 3 3 3 Đẳng thức xảy ra ⇔ a = b = c = 3 Bài tập tương tự Cho a, b,c là ba số dương thỏa mãn điều kiện a 2 + b2 + c2 = 1 Chứng minh rằng: a3 b3 c3 1 + + ≥ a+b b+c c+a 2 Bài 4: Cho a, b,c là ba số dương thỏa mãn điều kiện ab + bc + ca = 1 Chứng minh rằng: a b c 3 + + ≤ (1) 1+a 2 1+ b 2 1+ c 2 2 Hướng dẫn: + Sử dụng giả thiết biến đổi bđt về bđt đồng bậc. + Sử dụng kỹ thuật đánh giá biểu thức đại diện Bài giải: Sử dụng giả thiết ab + bc + ca = 1 để đưa bđt về bđt đồng bậc 0 ở hai vế Áp dụng bất đẳng thức Cô-si ta có: a a a a 1⎛ a a ⎞⎟ = = . ≤ ⎜ ⎜a + b + a + c⎠ ⎜ ⎟ ⎟ 1+a 2 2 a + ab + bc + ca a+b a+c 2⎝ Chứng minh tương tự ta cũng được:
  4. b 1⎛ b ⎜ b ⎞⎟ ≤ ⎜ + ⎟ ⎟ 1+b 2 2 ⎜b + c b + a⎠ ⎝ c 1⎛ c ⎜ c ⎞⎟ ≤ ⎜ ⎜c + a + a + b⎠ ⎟ ⎟ 1+c 2 2⎝ Cộng vế với vế các bđt trên ta được bđt: a b c 1 ⎛a + b b + c c + a ⎞ 3 ⎟= + + ≤ ⎜⎜ + + ⎟ ⎟ 1+a 2 1+ b 2 1+ c 2 2 ⎜a + b b + c c + a ⎠ 2 ⎝ 3 Đẳng thức xảy ra ⇔ a = b = c = 3 Bài 5: Cho ba số dương a, b,c thỏa mãn a + b + c = 2 Tìm giá trị lớn nhất của biểu thức: ab bc ac S= + + 2c + ab 2a + bc 2b + ac Bài giải: Ta lần lượt có: ⎧ ⎪ ab ab ab ab ⎛ 1 1 ⎞ ⎪ ⎪ ⎜ ⎟ ⎪ 2c + ab = c (a + b + c) + ab = (c + a )(c + b) ≤ 2 ⎜ c + a + c + b ⎠ ⎪ ⎜ ⎝ ⎟ ⎟ ⎪ ⎪ ⎪ ⎪ bc bc bc bc ⎛ 1 1 ⎞ ⎪ ⎨ = = ≤ ⎜ + ⎟ ⎜ ⎟ ⎟ ⎪ ⎪ 2a + bc a (a + b + c) + bc (a + b)(a + c) 2 ⎜a + b a + c⎠ ⎝ ⎪ ⎪ ⎪ ⎪ ca ca ca ⎛ ca ⎜ 1 1 ⎞ ⎟ ⎪ 2b + ac = b (a + b + c) + ca = (b + c)(b + a ) ≤ 2 ⎜ b + c + b + a ⎠ ⎪ ⎪ ⎜ ⎝ ⎟ ⎟ ⎪ ⎩ bc + ca bc + ab ca + ab a+b+c ⇒S≤ + + = =1 2 (a + b) 2 (c + a ) 2 (c + b) 2 2 Đẳng thức xảy ra ⇔ a = b = c = 3 Vậy Max S = 1 . Bài tập tương tự Cho ba số dương a, b,c thỏa mãn a + b + c = 2 Chứng minh rằng: ab bc ac 1 + + ≤ c + ab a + bc b + ac 2 Phương pháp 2: SỬ DỤNG BẤT ĐẲNG THỨC ĐỒNG BẬC DẠNG CỘNG MẪU SỐ Dạng 1: 1) ∀x, y > 0 ta luôn có:
  5. ⎛1 1⎞ ( x + y)⎜ + ⎟ ≥ 4 ⎜ ⎟ ⎟ ⎜x y⎠ ⎝ Đẳng thức xảy ra ⇔ x = y 2) ∀x, y, y > 0 ta luôn có: ⎛1 1 1⎞ ⎟≥9 (x + y + x )⎜ + + ⎜ ⎟ ⎟ ⎜x y ⎝ y⎠ Đẳng thức xảy ra ⇔ x = y = z Dạng 2: 1) ∀x, y > 0 ta luôn có: 1 1 4 + ≥ x y x+y Đẳng thức xảy ra ⇔ x = y 2) ∀x, y, z > 0 ta luôn có: 1 1 1 9 + + ≥ x y z x+y+z Đẳng thức xảy ra ⇔ x = y = z Bài 1: Cho a,b,c là các số dương.Chứng minh rằng: ab bc ca a+b+c + + ≤ a + b + 2c b + c + 2a c + a + 2b 4 Bài giải Biến đổi và áp dụng bất đẳng thức cộng mẫu số ta được: ab 1 1⎛ 1 1 ⎞⎟ = ab. ≤ ab. ⎜⎜a + c + b + c⎠ ⎜ ⎟ ⎟ a + b + 2c (a + c ) + ( b + c ) 4⎝ Tương tự ta cũng được: bc 1 1⎛ 1 1 ⎞⎟ = bc. ≤ bc. ⎜⎜ + ⎟ ⎟ b + c + 2a (b + a ) + ( c + a ) 4 ⎜b + a c + a⎠ ⎝ ca 1 1⎛ 1 ⎜ 1 ⎞⎟ = ca. ≤ ca. ⎜ + ⎟ ⎟ c + a + 2b ( c + b ) + (a + b ) 4 ⎜c + b a + b⎠ ⎝ Cộng vế với vế các bđt trên ta được bđt ab bc ca 1 ⎛ bc + ca ca + ab ab + bc ⎞ a + b + c ⎟= + + ≤ ⎜ ⎜ + + ⎟ ⎟ a + b + 2c b + c + 2a c + a + 2b 4 ⎜ a + b ⎝ b+c a+c ⎠ 4 Dấu đẳng thức xảy ra ⇔ a = b = c > 0 Bài 2: Cho a,b,c là các số dương.Chứng minh rằng: ab bc ca a+b+c + + ≤ a + 3b + 2c b + 3c + 2a c + 3a + 2b 6 Bài giải Biến đổi và áp dụng bất đẳng thức cộng mẫu số ta được:
  6. ab 1 1⎛ 1 1 1⎞ = ab. ≤ ab. ⎜⎜ + + ⎟ ⎟ ⎟ a + 3b + 2c (a + c) + (b + c) + 2b 9 ⎜ a + c b + c 2b ⎠ ⎝ Tương tự ta cũng được: bc 1 1⎛ 1 1 1⎞ = bc. ≤ bc. ⎜⎜ + + ⎟ ⎟ ⎟ b + 3c + 2a (b + a ) + (c + a ) + 2c 9 ⎜ b + a c + a 2c ⎠ ⎝ ca 1 1⎛ 1 1 1⎞⎟ = ca. ≤ ca. ⎜ ⎜ c + b + a + b + 2a ⎠ ⎜ ⎟ ⎟ c + 3a + 2b (c + b) + (a + b) + 2a 9⎝ Cộng vế với vế các bđt trên ta được bđt ab bc ca 1 ⎛ a + b + c bc + ca ca + ab ab + bc ⎞ a + b + c ⎟= + + ≤ ⎜⎜ + + + ⎟ ⎟ a + 3b + 2c b + 3c + 2a c + 3a + 2b 9 ⎜ ⎝ 2 a+b b+c a+c ⎠ 6 Dấu đẳng thức xảy ra ⇔ a = b = c > 0 Bài 3: 1 1 1 + + = 4 .Chứng minh rằng: Cho a,b,c là các số dương thỏa mãn a b c 1 1 1 + + ≤1 2a + b + 2c a + 2b + c a + b + 2c Bài giải: Biến đổi và áp dụng bất đẳng thức cộng mẫu số ta được: 1 1 1⎛ 1 ⎜ 1 ⎞ ⎟ ≤ 1 ⎛ 2 + 1 + 1⎞ ⎟ = ≤ ⎜ ⎜ + ⎟ ⎜ ⎟ 2a + b + c (a + b) + (a + c) 4 ⎝ a + b a + c ⎠ 16 ⎜ a b c ⎠ ⎟ ⎝ ⎟ 1 1 1⎛ 1 ⎜ 1 ⎞ ⎟ 1 ⎛ 1 2 1⎞⎟ = ≤ ⎜ + ⎜ ⎟≤ ⎜ + + ⎠ ⎟ a + 2b + c (a + b) + (b + c) 4 ⎝ a + b b + c ⎠ 16 ⎝ a b c ⎟ ⎜ ⎟ 1 1 1⎛ 1 1 ⎞ ⎟ 1 ⎛ 1 1 2⎞ ⎟ = ≤ ⎜ ⎜ + ⎜ ⎟ ≤ 16 ⎜ a + b + c ⎠ ⎟ ⎟ ⎟ a + b + 2c (a + c) + (b + c) 4 ⎜ a + c b + c ⎠ ⎝ ⎝ Cộng vế với vế các bđt trên ta được bđt 1 1 1 1 ⎛ 1 1 1⎞ 1 + + ≤ ⎜ + + ⎟ = .4 = 1 ⎟ 2a + b + 2c a + 2b + c a + b + 2c 4 ⎜ a b c ⎠ 4 ⎝ ⎟ 3 Dấu đẳng thức xảy ra ⇔ a = b = 4 Phương pháp 3: SỬ DỤNG CÁC BẤT ĐẲNG THỨC TRONG DÃY BẤT ĐẲNG THỨC BẬC BA Dãy bất đẳng thức đồng bậc bậc ba: 3 ab (a + b) ⎛ a + b ⎞ 3 (a + b)(a 2 + ab + b2 ) a 3 + b3 (a 2 + b2 ) ⎜ ≤⎜ ⎟ ≤ ⎟ ≤ ≥ (1) 2 ⎝ 2 ⎠ ⎟ 6 2 (a + b) 3 Dấu bằng xảy ra ⇔ a = b Bài 1: Cho a, b, c là các số thực dương. Chứng minh rằng: b+c c+a a+b + + ≤2 a + 3 4 (b + c ) b + 3 4 (c + a ) c + 3 4 (a 3 + b3 ) 3 3 3 3
  7. Bài giải: Sử dụng bất đẳng thức (1) ta có 3 4 (b 3 + c 3 ) ≥ b + c Do đó: 3 4 (b 3 + c 3 ) ≥ b + c ⇒ a + 3 4 (b 3 + c 3 ) ≥ a + b + c 1 1 b+c b+c ⇒ ≤ ⇒ ≤ a + 3 4 (b 3 + c 3 ) a+b+c a + 3 4 (b 3 + c 3 ) a + b + c Chứng minh tương tự ta cũng được: c+a c+a ≤ b + 3 4 (c + a ) a + b + c 3 3 a+b a+b ≤ c + 3 4 (a 3 + b3 ) a+b+c Cộng vế với vế các bất đẳng thức trên ta được bđt b+c c+a a+b 2 (a + b + c ) + + ≤ =2 a + 3 4 (b3 + c 3 ) b + 3 4 (c3 + a 3 ) c + 3 4 (a 3 + b3 ) a+b+c Dấu đẳng thức xảy ra ⇔ a = b = c > 0 Bài 2: Cho a, b, c là các số thực dương. Chứng minh rằng: 1 1 1 1 3 3 + 3 3 + 3 3 ≤ a + b + abc b + c + abc c + a + abc abc Bài giải Sử dụng bất đẳng thức (1) ta có a 3 + b3 ≥ ab (a + b) Do đó: 1 1 a 3 + b3 + abc ≥ ab (a + b + c) ⇒ ≤ a + b + abc ab (a + b + c) 3 3 Chứng minh tương tự ta cũng được: 1 1 ≤ b + c + abc bc (a + b + c) 3 3 1 1 ≤ c + a + abc ca (a + b + c) 3 3 Cộng vế với vế các bất đẳng thức trên ta được bđt 1 1 1 1 ⎛1 1 1⎞⎟ 1 + 3 + 3 ≤ ⎜ ⎜ ab + bc + ca ⎠ = abc ⎟ ⎟ a + b + abc b + c + abc c + a + abc a + b + c ⎝ 3 3 3 3 Dấu đẳng thức xảy ra ⇔ a = b = c > 0 Bài 4: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc = 1 . Chứng minh rằng: a 3 + b3 b3 + c3 c3 + a 3 + 2 + 2 ≥2 a 2 + ab + b2 b + bc + c2 c + ca + a 2
  8. Bài giải: a 2 + b2 a+b Sử dụng bất đẳng thức (1) ta có 2 2 ≥ a + ab + b 3 Suy ra: a 3 + b3 b3 + c3 c3 + a 3 a+b b+c c+a 2 2 2 2 + 2 2 + 2 2 ≥ + + = (a + b + c) ≥ 3. 3 abc = 2 a + ab + b b + bc + c c + ca + a 3 3 3 3 3 Dấu đẳng thức xảy ra ⇔ a = b = c = 1 Bài toán tương tự: Cho x, y, z là các số thực dương thỏa mãn điều kiện xyz = 1 . Chứng minh rằng: x 9 + y9 y 9 + z9 z9 + x 9 + 6 + 6 ≥2 x 6 + x 3 y 3 + y9 y + y 3 z 3 + z6 z + z3 x 3 + x 6 Bài 5: Cho các số dương a, b,c thỏa mãn điều kiện abc = 1 Chứng minh rằng: 1 + a 2 + b2 1 + b2 + c 2 1 + c2 + a 2 + + ≥3 3 ab bc ca Bài giải: Áp dụng bất đẳng thức Cô-si ta có: 1 + a 3 + b3 ≥ 3 3 1.a 3 .b3 = 3ab 1 + a 3 + b3 3 Suy ra: 1 + a 3 + b3 ≥ 3 3 1.a 3 .b3 = 3ab ⇒ ≥ ab ab Chứng minh tương tự ta cũng được: 1 + b3 + c3 3 ≥ bc bc 1 + c3 + a 3 3 ≥ ca ca Cộng vế với vế các bất đẳng thức trên ta được bđt 1 + a 2 + b2 1 + b2 + c 2 1 + c2 + a 2 3 3 3 3 3 3 + + ≥ + + ≥ 33 . . =3 3 ab bc ca ab bc ca ab bc ca Dấu đẳng thức xảy ra ⇔ a = b = c = 1 Bài 6: Cho ba số dương a, b, c. Chứng minh bất đẳng thức: 2 a 2 b 2 c 1 1 1 3 2 + 3 2 + 3 2 ≤ 2 + 2 + 2 a +b b +c c +a a b c Bài giải Áp dụng bất đẳng thức Cô-si ta có: a 3 + b2 ≥ 2 a 3 b2 = 2ab b 2 a 1 Suy ra: a 3 + b2 ≥ 2 a 3 b2 = 2ab b ⇒ 3 2 ≤ a +b ab Chứng minh tương tự ta cũng được:
  9. 2 b 1 3 2 ≤ b +c bc 2 c 1 3 2 ≤ c +a ca Cộng vế với vế các bất đẳng thức trên ta được bđt 2 a 2 b 2 c 1 1 1 1 1 1 3 2 + 3 2 + 3 2 ≤ + + ≤ 2 + 2 + 2 a +b b +c c +a ab bc ca a b c Dấu đẳng thức xảy ra ⇔ a = b = c > 0 Giáo viên biên soạn: HUỲNH CHÍ HÀO. Sáng lập chihao.info Đơn vị: THPT Thành phố Cao Lãnh Tỉnh Đồng Tháp - Ngày soạn 28/04/2009. -------------------Hết------------------
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2