CƠ HỌC LÝ THUYẾT - PHẦN 3 ĐỘNG LỰC HỌC - CHƯƠNG 13
lượt xem 13
download
CÁC ĐỊNH LÝ TỔNG QUÁT ĐỘNG LỰC HỌC I. ĐỊNH LÝ CHUYỂN ĐỘNG KHỐI TÂM CƠ HỆ. 1. Định lý chuyển động khối tâm cơ hệ. Khối tâm của cơ hệ chuyển động như một chất điểm có khối lượng bằng khối lượng của cơ hệ và chịu tác dụng của lực có vectơ lực bằng vectơ chính của hệ ngoại lực tác dụng lên cơ hệ: uu r re MW C = ∑ FK (13.1)
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: CƠ HỌC LÝ THUYẾT - PHẦN 3 ĐỘNG LỰC HỌC - CHƯƠNG 13
- CHƯƠNG 13: CÁC ĐỊNH LÝ TỔNG QUÁT ĐỘNG LỰC HỌC I. ĐỊNH LÝ CHUYỂN ĐỘNG KHỐI TÂM CƠ HỆ. 1. Định lý chuyển động khối tâm cơ hệ. Khối tâm của cơ hệ chuyển động như một chất điểm có khối lượng bằng khối lượng của cơ hệ và chịu tác dụng của lực có vectơ lực bằng vectơ chính của hệ ngoại lực tác dụng lên cơ hệ: uu r re MW C = ∑ FK (13.1) Chứng minh: uu r re ri m .W1 = F1 + F1 uu r rr 1 m .W 2 = Fe + Fi2 2 Xét hệ có n chất điểm, hệ phương trình vi phân của nó là: 2 . .......................... uu r re ri m n .W n = Fn + Fn uu r re ri Cộng từng vế các phương trình của hệ ta được: ∑ m K .W K = ∑ FK + ∑ FK . ri uu r re Ta thấy ∑ FK = 0 nên ∑ m K .W K = ∑ FK (*) r r Mặc khác từ (12.1) ta có rC .M = ∑ m K .rK uur uu r r r Lấy đạo hàm hai lần đẳng thức này ta được: && .M = ∑ m K .rK ⇔ W C .M = ∑ m K .W K , && rC uu r re thay vào (*) ta được MW C = ∑ FK . Định lý đã được chứng minh. Mx C = ∑ FKx && e Chiếu (13.1) lên các trục tọa độ ta được: My C = ∑ FKy && (13.2). Đây là phương e Mz = Fe &&C ∑ Kz trình vi phân chuyển động khối tâm dưới dạng hình chiếu. 2. Định luật bảo toàn khối tâm cơ hệ. Nếu vectơ chính của các ngoại lực tác dụng lên cơ hệ bằng không thì khối tâm của cơ hệ đứng yên hoặc chuyển động thẳng đều. uu r ur re Chứng minh: Từ (13.1) ta thấy nếu ∑ FK = 0 thì W C = 0 ⇒ V C = cosnt . Vậy nếu ur ur ban đầu V C = 0 thì khối tâm cơ hệ đứng yên, còn nếu V C = V0 thì khối tâm cơ hệ chuyển động thẳng đều với vectơ V0. Hoàn toàn tương tự với (13.2) ta có định luật sau: Nếu hình chiếu của vectơ chính của các ngoại lực lên một trục nào đó luôn luôn bằng không thì hình chiếu của khối tâm cơ hệ trên trục đó đứng yên hoặc chuyển động thẳng đều. Định luật này gọi là “Định luật bảo toàn chuyển động của hình chiếu khối tâm cơ hệ” II. ĐỊNH LÝ BIẾN THIÊN ĐỘNG LƯỢNG. 1. Động lượng của chất điểm và cơ hệ. r a, Động lượng chất điểm: Động lượng chất điểm là một đại lượng vectơ, ký hiệu là q bằng tích khối lượng của chất điểm với vận tốc của nó. ur r q = m.V (13.3) 12
- ur b, Động lượng cơ hệ: Động lượng cơ hệ (ký hiệu là Q ) là tổng hình học động lượng các chất điểm thuộc cơ hệ. ur ur Q = ∑ m K .V K (13.4) r r Từ (12.1) ta được ∑ m K .rK = M.rC . Đạo hàm hai vế đẳng thức này theo t ta được: ur ur ur ur ∑ mK .V K = M.VC . Hay là Q = M.VC . Như vậy động lượng cura cơ hệ có thể xác định ủ ur ur bằng công thức Q = M.V C . Với M là khối lượng của cả cơ hệ, V C là vận tốc khối tâm cơ hệ. 2. Xung lượng của lực(Xung lực). r r Xung lượng nguyên tố của lực F là đại lượng vectơ, ký hiệu là dS , bằng tích của r lực F và dt. rr dS = F.dt (13.5) r Xung lượng của F trong khoảng thời gian hữu hạn từ t 0 → t1 là tích phân của xung r rr r t1 r t1 r lực nguyên tố: S = ∫ dS = ∫ F.dt . Nếu F = cosnt thì S = F. ( t1 − t 0 ) . t0 t0 Đơn vị của xung lực là Ns. 3. Các định lý biến thiên động lượng của chất điểm và cơ hệ. a, Định lý 1: Đạo hàm theo thời gian động lượng của chất điểm bằng hợp lực của các lực tác dụng lên chất điểm đó. ur ( ) r r d ( q ) d m.V = ∑ FK = (13.6) dt dt Chứng minh: Xét chất điểm M có khối lượng m, các lực tác dụng vào chất điểm là rr r F1 , F2 ,..., Fn . Viết phương trình cơ bản động lực học cho M ta có: ur ur ( ) r r uur dV d m.V dq ∑ FK = mW = m = = (ĐPCM) dt dt dt b, Định lý 2: Đạo hàm theo thời gian động lượng của cơ hệ bằng vectơ chính của các ngoại lực tác dụng lên cơ hệ. ur () re dQ = ∑ FK (13.7) dt Chứng minh: Xét chất điểm M K có khối lượng m K , các lực tác dụng vào chất điểm re ri gồm có ngoại lực FK và nội lực FK . Theo định lý 1 ta có: ur ( ) r re ri dq K d m K .V K = = F K + FK . dt dt Cộng từng vế đẳng thức này ta được: ur ur ( ) ur re ri d m K .V K d dQ ∑ dt = dt ∑ m K .V K = dt = ∑ FK + ∑ FK ur ri re dQ Chú ý là ∑ FK = 0 nên = ∑ FK (ĐPCM) dt c, Định lý 3: Biến thiên động lượng của chất điểm trong một khoảng thời gian nào đó bằng tổng hình học xung lượng của các lực tác dụng lên chất điểm trong thời gian ấy. 13
- ur ur r r t1 m.V1 − m.V 0 = ∑ ∫ FK .dt = ∑ SK (13.8) ur r t0 ( ) Chứng minh: Từ (13.6) ta có d m.V = ∑ FK .dt . Tích phân hai vế đẳng thức này ur u ur t1 r r t1 ( ) V1 với cận tương ứng ta được ∫ d m.V = ∫ ∑ FK .dt = ∑ ∫ FK .dt . ur u t0 t0 V0 ur ur r r t1 Hay là : m.V1 − m.V 0 = ∑ ∫ FK .dt = ∑ SK (ĐPCM) t0 d, Định lý 4: Biến thiên động lượng của cơ hệ trong một khoảng thời gian nào đó bằng tổng hình học xung lượng của các ngoại lực tác dụng lên cơ hệ trong khoảng thời gian ấy. ur ur re re t1 Q1 − Q 0 = ∑ ∫ FK .dt = ∑ SK (13.9) t0 ur re () Chứng minh: Từ (13.7) ta có d Q = ∑ FK .dt . Tích phân hai vế đẳng thức này với ur u ur re re t1 t1 () V1 cận tương ứng ta được ∫ d Q = ∫ ∑ FK .dt = ∑ ∫ FK .dt . ur u t0 t0 V0 ur ur re re t1 Hay là : Q1 − Q 0 = ∑ ∫ FK .dt = ∑ SK (ĐPCM) t0 Chú ý: Khi chiếu các đẳng thức trên lên các trục tọa độ đề các ta có các hệ sau: ur ( ) d m.V x r = ∑ FKx dt ur ( ) r d m.V y = ∑ FKy - Chất điểm: (13.10) dtur ( ) d m.V z r = ∑ FKz dt ur ur r r t1 m.V1x − m.V 0x = ∑ ∫ FKx .dt = ∑ SKx t0 ur ur r r t1 m.V1y − m.V 0 y = ∑ ∫ FKy .dt = ∑ SKy và (13.11) t0 ur ur r r t1 m.V1z − m.V 0z = ∑ ∫ FKz .dt = ∑ SKz t0 14
- ur (Q ) = d re ∑F x ur ur r Kx Q − Q = Se ∑ Kx dt ur ( )= ur 1x 0x re ur re d Qy Q1y − Q 0y = ∑ SKy ∑F - Cơ hệ: (13.12) và Ky ur ur re dt ur Q1z − Q0z = ∑ SKz ( )= d re Qz ∑F Kz dt (13.13) Trong các công thức trên ta không thấy sự có mặt của nội lực. Vậy nội lực không làm biến đổi động lượng của hệ. Các định lý trên thường được sử dụng cho các bài toán va chạm và các bài toán về chuyển động trong môi trường liên tục. Sau đây ta xét một số trường hợp mà động lượng được bảo toàn. 4. Định luật bảo toàn động lượng. Ta chỉ xét cho trường hợp cơ hệ, đối với chất điểm được xem như mọt trường hợp riêng của cơ hệ. a, Định lý 5: Nếu vectơ chính của các ngoại lực tác dụng lên cơ hệ luôn luôn bằng không thì động lượng của cơ hệ được bảo toàn. re ur ∑ FK = 0 ⇔ Q = cosnt (13.14) ur () re re ur dQ Chứng minh: Nếu ∑ FK = 0 , từ (13.7) ta có = ∑ FK = 0 ⇒ Q = cosnt . dt (ĐPCM) b, Định lý 6: Nếu hình chiếu của vectơ chính của các ngoại lực lên một trục nào đó luôn luôn bằng không thì hình chiếu động lượng của cơ hệ lên trục ấy được bảo toàn. ur () re re ur d Qx Chứng minh: Nếu ∑ FKx = 0 , ta có = ∑ FKx = 0 ⇒ Q x = cosnt . (ĐPCM) dt III. ĐỊNH LÝ BIẾN THIÊN MÔMEN ĐỘNG LƯỢNG. 1. Mômen động lượng của chất điểm và cơ hệ. a, Mômen động lượng của chất điểm: - Mômen động lượng của chất điểm đối với tâm O là một vectơ ký hiệu là lO là mômen của vectơ động lượng đối với điểm O. ur r ur r rr r ( ) lO = m O ( q ) = m O m.V = r ∧ m.V (13.15) - Mômen động lượng của chất điểm đối với trục z là một lượng đại số ký hiệu là lz ur rr r ( ) l Z = m Z ( q ) = m Z m.V = ± ( m.V′ ) .h (13.16) ur Trong đó m.V′ là hình chiếu của m.V lên mặt phẳng π vuông góc với trục z, h là khoảng cách từ O (là giao điểm của mặt phẳng π với trục z) đến m.V′ . Lấy dấu cộng khi uur nhìn từ trục z xuống mặt phẳng π thấy V′ quay quanh O theo ngược chiều kim đồng hồ. Tương tự mômen lực ở tĩnh học ta cũng có: Mômen động lượng của chất điểm đối với một trục bằng hình chiếu lên trục ấy của vectơ mômen động lượng của chất điểm đối với một điểm thuộc trục. rr r r () () hc z lO = hc z m O F = m z F (13.17) 15
- Gọi x,y,z là tọa độ của chất điểm và Vx , Vy , Vz là hình chiếu vận tốc chât điểm ấy lên r r r i j k ur rr các trục tọa độ. Từ (13.15) ta có: lO = r ∧ m.V = x z. (13.18) y mVx mVy mVz l x = m ( y.VZ − z.Vy ) Tương tự công thức (1.2) ta c ũng có: l y = m ( z.Vx − x.Vz ) (13.19) lz = m ( x.Vy − y.Vx ) b, Mômen động lượng của cơ hệ: - Mômen động lượng của cơ hệ đối với một tâm bằng tổng mômen động lượng của các chất điểm thuộc cơ hệ với cùng tâm đó. u r ur ur rr r r ( ) LO = ∑ m O ( q K ) = ∑ m O m K .V K = ∑ rK ∧ m K .V K (13.20) - Mômen động lượng của cơ hệ đối với một trục bằng tổng mômen động lượng của các chất điểm thuộc cơ hệ với cùng trục đó. ur rr r ( ) L Z = ∑ m Z ( q K ) = ∑ m Z m K .V K (13.21) 2 Đơn vị của mômen động lượng là: kgm /s c, Mômen động lượng của vật rắn quay quanh trục cố định: Xét vật rắn quay quanh trục cố định z với vận tốc góc là ω. Mômen động lượng của chất điểm M K với trục z là: ur ur r ( ) lKZ = m Z m K .V K . Do m K .V K nằm trên mặt phẳng chứa M K và ur r rK nên lKZ = ± rK .m K .VK . Theo hình vẽ ta lấy dấu cộng vậy m.V k r lKZ = rK .m K .VK . Mặc khác VK = ω.rK nên ta có lKZ = ω.m K .rK . ω 2 ur r Vk Mômen động lượng của cả vật đối với trục z là: rr rk L Z = ∑ m Z ( q K ) = ω.∑ m K .rK 2 Mk Theo (12.3) thì J z = ∑ m K .d 2 = ∑ m K .rK , vậy ta được: 2 K L Z = ω.J z (13.22) 2. Định lý biến thiên mômen động lượng của chất điểm và cơ hệ. a, Định lý 1: Đạo hàm theo thời gian mômen động lượng của chất điểm đối với một tâm (với một trục) cố định bằng tổng mômen các lực tác dụng lên chất điểm đối với cùng tâm (trục) đó. r r rr () () d lO dl z = ∑ m O FK = ∑ m z FK (13.23) và (13.24) dt dt Chứng minh: Xét chất điểm M, có khối lượng m, chịu tác dụng của hệ lực rr r ( ) Phương cơ bản của động lực học: F1 , F2 ,..., Fn . trình ur ur ( ) uur r r r d m.V dV m.W = ∑ FK ⇔ m. = ∑ FK ⇔ = ∑ FK dt dt r r Gọi r là vectơ định vị chất điểm, nhân hai vế đẳng thức trên với r ta được: ur ( ) r r d m.V r = r ∧ ∑ FK r∧ (*) dt 16
- r ur dr ur r d ur dr ( ) ( ) r ∧ m.V = ∧ mV + r ∧ rằng thấy Chú ý m.V . Mà ta dt dt dt r ur ur ur dr ∧ mV = V ∧ mV = 0 dt ur r d ur ur r r dr dr ( ) ( ) ( ) r ∧ m.V = r ∧ ∑ FK hay là: ⇒ r ∧ m.V = r ∧ m.V . Thay vào (*) ta có: dt dt dt r () r rr rr r ( ) () d lO = r ∧ ∑ FK = ∑ r ∧ FK = ∑ m O FK (ĐPCM) dt Chiếu 2 vế của (13.23) lên trục z qua điểm O ta được (13.24). b, Định lý 2: Đạo hàm theo thời gian mômen động lượng của cơ hệ đối với một tâm (với một trục) cố định bằng tổng mômen của các ngoại lực tác dụng lên cơ hệ đối với cùng tâm (trục) đó. ur re r re () () dL z dL O = ∑ m O FK = ∑ m z FK (13.25) và (13.26) dt dt Chứng minh: Xét cơ hệ có n chất điểm, gọi nội lực và ngoại lực tác dụng lên chất ri re điểm thứ K là FK và FK . Áp dụng (13.23) cho chất điểm thứ K ta được: r () r ri r re () () d lOK = m O FK + m O F K dt Viết phương trình như trên cho tất cả các chất điểm còn lại của cơ hệ và cộng từng vế ta được: r () r ri r re () () d lOK ∑ dt = ∑ mO FK + ∑ mO FK (*) r () du r r ri r () () d lOK ( ) d Ta có ∑ ∑ lOK = dt LO và ∑ mO FK nên (*) được viết lại là: = dt dt ur r re () dL O = ∑ m O FK (ĐPCM) dt Chiếu 2 vế của (13.25) lên trục z qua điểm O ta được (13.26). 3. Định luật bảo toàn mômen động lượng. Nếu mômen chính của các ngoại lực tác dụng lên cơ hệ đối với một tâm (một trục) cố định luôn luôn bằng không thì mômen động lượng của cơ hệ đối với tâm (trục) đó bảo toàn. u r r re u r () dLO Chứng minh: Từ (13.25) ta thấy nếu ∑ m O FK = 0 thì = 0 ⇒ L O = const . dt Như vậy mômen động lượng đối với một tâmcủa cơ hệ được bảo toàn. r re () Tương tự từ (13.26) ta cũng chứng minh được nếu ∑ m O FK = 0 thì mômen động lượng đối với một trục của cơ hệ được bảo toàn. r ur IV. ĐỊNH LÝ BIẾN THIÊN ĐỘNG NĂNG. Z M1 Fτ V M0 1. Công của lực. r a, Công nguyên tố của lực: Công nguyên tố dA của r F α lực F trên đoạn dời điểm đặt vô cùng nhỏ ds của nó là đại lượng vô hướng bằng: O Y dA = F.ds.cosα (13.27). X 17
- ur r Nhận xét rằng F.cosα = Fτ là hình chiếu của F lên phương V . Vậy dA = Fτ .ds . Có thể viết biểu thức công nguyên tố dưới những dạng khác: - Vì ds = V.dt nên dA = F.V.cosα.dt = Fτ .V.dt . (13.28) r ur ur rr r - Biết F.V.cosα = F.V và V.dt = dr nên dA = F.dr . (13.29) rrr r - Gọi Fx , Fy , Fz hình chiếu của F lên các trục tọa độ thì dA = Fx dx + Fy dy + Fz dz (13.30) b, Công hữu hạn của lực: Công của lực trên quãng đường hữu hạn M 0 M1 do điểm đặt của lực vạch ra bằng tích phân của công nguyên tố trên quãng đường ấy. M1 ∫ dA AM M = (13.31) ¼ 0 1 M0 Đơn vị của công là jun, ký hiệu là J. Đơn vị này có thể gọi là Niutơn mét, ký hiệu là N.m. c, Công của một số lực thường gặp: ur ♦Công của trọng lực: Giả sử chất điểm M chịu tác dụng Z Mcủa trọng lực P 0 đời chỗ theo đường cong (C) nào đó từ M 0 (x 0 , y 0 , z 0 ) đến u r M1 (x1 , y1 , z1 ) như hình vẽ. Ở gần mặt đất, trọng lực P có thể xem M1 ur như không đổi là P = m.g hường thẳng đứng xuống dưới. P Chọn hệ tọa độ như hình vẽ, trục Oz hướng thẳng đứng lên trên và u r Y ta có: Px = Py = 0 , Pz = −P . Khi đó công của lực P khi M di X O chuyển trên đoạn M 0 , M1 là: M1 M1 z1 ∫ dA = ∫ ( P .dx + P .dy + P .dz ) = ∫ −P.dz A M0 →M1 = x y z M0 M0 z0 A M0 →M1 = −P ( z1 − z 0 ) = P ( z 0 − z1 ) . Nếu gọi h = z 0 − z1 thì ta có A P = ± P.h Dấu (+) khi z 0 ≥ z1 , tức M đi xuống thấp, dấu (-) khi z 0 < z1 , tức M đi lên cao. Từ các công thức trên ta thấy công của trọng lực không phụ thuộc vào dạng quỹ đạo điểm đặt lực mà chỉ phụ thuộc điểm đầu và điểm cuối của điểm đặt lực, tức độ chênh cao h. Công của trọng lực tác dụng lên cơ hệ bằng tổng công trọng lực tác dụng lên các chất điểm thuộc hệ, vậy ta có công của trọng lực tác dụng lên cơ hệ khi nó dịch chuyển từ vị trí 0 đến vị trí 1 là: A 0→1 = ∑ PK ( z K 0 − ZK1 ) = ∑ PK .z K0 − ∑ PK .z K1 . Từ công thức xác định khối tâm ta có: ∑ PK .z K = P.z C với P = ∑ PK là trọng lượng của cả hệ, C là khối tâm của cơ hệ. Thay vào ta có: A 0→1 = P.z C0 − P.z C1 = ± P.h với h = z C 0 − z C1 (13.32) Như vậy khi tính công của trọng lực tác dụng lên hệ chất điểm ta có thể quy về một chất điểm mạng khối lượng của cả cơ hệ nằm tạ khối tâm của cơ hệ. ♦ Công của lực đàn hồi tuyến tính: Trong nhiều trường hợp, do tính đàn hồi của r vật gây liên kết mà nó tác dụng lên chất điểm một lực F tuân theo định luật Húc: r r r F = −C.r . Trong công thức trên C là hệ số cứng, r là vectơ định vị chất điểm từ vị trí cân bằng. Khi đó công của đàn hồi trên đoạn dịch chuyển M 0 → M1 là: r 2 r1 r r r 1r r1 rr rr r M1 r r r = − ( r12 − r02 ) 1 r C A M0 →M1 = ∫ dA = ∫ F.dr = ∫ −C.r.dr = −C ∫ r.dr = − C. r r r 2r 2 M0 r0 r0 r0 r 0 18
- r C.λ 2 C.r 2 Nếu M 0 trùng với vị trí cân bằng tĩnh thì r0 = 0 , vậy A M0 →M1 = − 1 = − 2 2 (13.33) với λ = r1 . Cũng như công của trọng lực, công của lực đàn hồi tuyến tính cũng chỉ phụ thuộc điểm đầu và điểm cuối mà không phụ thuộc quỹ đạo điểm đặt lực. ♦ Công của lực tác dụng lên vật rắn chuyển động: - Chuyển động tịnh tiến: Theo công thức tính công nguyên tố (13.29) ta có: r r r ur r ur rr dA = F.dr = F.V.dt = F.V C .dt = F.drC (13.34) r () - Chuyển động quay quanh trục cố định z: dA = Fτ .ds = Fτ .R.dϕ = m z F .dϕ (13.35) Nếu là ngẫu lực m z thì ta có: dA = m z .dϕ (13.36) - Chuyển động song phẳng: Xem vật chuyển động quay quanh trục Pz đi qua P (tâm vận tốc tức thời) và vuông góc với mặt phẳng chuyển động. r () Viết (13.35) ta được: dA = m zP F .dϕ (13.37) Vì P liên tục thay đổi do vậy người ta còn đưa ra công thức sau: r rr () dA = m zC F .dϕ + FC .drC ♦ Công của lực ma sát: - Ma sát trượt: dA = Fms .ds.cosα mà cosα = −1 nên dA = − Fms .ds = −f .N.ds (13.38) Công của lực ma sát trượt luôn luôn âm. - Công của lực ma sát tác dụng lên vật lăn không trượt: Tiếp điểm P là tâm vận tốc tức thời nên VP = 0 , ta có: dA = Fms .ds = Fms .VP .dt = 0 (13.39) Khi vật lăn không trượt, công của lực ma sát bằng không ♦ Công của các nội lực vật rắn: r Xét hai phần tử là M1 và M 2 của vật rắn. Lực tác dụng tương hỗ giữa chúng là F12 r r r và F21 hướng theo phương M1M 2 và F12 = −F21 . Tổng công nguyên tố của hai lực đó là: r r r r r ur r ur r ur ur ( ) dA1 + dA i2 = F12 .dr1 + F21.dr2 = F12 .V1.dt + F21.V 2 .dt = F12 . V1 − V 2 .dt i ur ur ur ur ur ur Theo định lý liên hệ vận tốc ta có: V M1 = V M 2 + V M1M 2 ⇒ V1 − V 2 = V M1M 2 . ur r r ur Mà V M1M 2 ⊥ F12 ⇒ F12 .V M1M 2 = 0 vậy dA1 + dA i2 = 0 . i - Ta có thể kết luận: tổng công của các nội lực tác dụng lên các chất điểm ∑ dAiK = 0 . thuộc vật rắn luôn bằng không (13.40) Chú ý rằng với các cơ hệ bất kỳ ∑ dA iK có thể khác không vì chúng làm cho các chất điểm chuyển động tương đối với nhau. 2. Công suất. Công suất là công do lực sinh ra trong một đơn vị thời gian. Ký hiệu của công là N, dA theo định nghĩa N = . dt (13.41) Đơn vị của công là Oát, ký hiệu là W. (1W=1J/s). 19
- ur r Ta có thể viết N = F.V.cosα , với α là góc giữa F và V . (13.42) 3. Động năng. a, Động năng của chất diểm và cơ hệ. - Động năng của chất điểm: là một đại lượng vô hướng dương, ký hiệu là T, được 1 T = m.V 2 xác định bằng công thức: (13.43) 2 - Động năng của cơ hệ: Là tổng động năng các chất điểm thuộc cơ hệ: 1 1 T = ∑ m K .VK = ∑ m K .VK 2 2 (13.44) 2 2 Trong trường hợp đặt biệt, cơ hệ gồm một số vật chuyển động thì động năng của nó là tổng động năng của các chất điểm chuyển động. b, Động năng trong một số chuyển động của vật. ur ur ♦Chuyển động tịnh tiến: Trong trường hợp này V K = V C nên động năng của vật là: 1 1 1 ∑ mK .VK2 = 2 ∑ mK .VC2 = 2 M.VC2 T= (13.45) 2 ♦Chuyển động quay quanh trục cố định z: Trong trường hợp này VK = ω.rK nên động năng của vật là: 1 1 1 1 T = ∑ m K .VK = ∑ m K .rK .ω2 = ω2 ∑ m K .rK = J z .ω2 2 2 2 (13.46) 2 2 2 2 ♦Chuyển động song phẳng: Ta coi như vật rắn chuyển động quay tức thời quanh trục Pz đi qua vận tốc tức thời P và vuông góc với mặt phẳng chuyển động. 1 Áp dụng (13.46) ta được: T = J Pz .ω2 . P luôn di chuyển khi vật rắn chuyển động 2 song phẳng nên ta biến đổi sang dạng thuận tiện hơn.Ta có J Pz = J Cz + M.d 2 , với Cz là trục song song với Pz và đi qua khối tâm C của vật rắn. Thay vào công thức trên ta được T = ( J Cz + M.d 2 ) .ω2 1 2 1 1 1 1 Hay T = J Cz .ω2 + M.d 2 .ω2 mà d.ω = PC.ω = VC nên T = J Cz .ω2 + M.VC 2 2 2 2 2 (13.47) 4. Các định lý biến thiên động năng đối với chất điểm và cơ hệ. a, Định lý 1: Vi phân động năng của chất điểm bằng tổng đại số công nguyên tố của các lực tác dụng lên chất điểm ấy. 1 dT = d mV 2 = ∑ dA K (13.48) 2 Chứng minh: Xét chất điểm M có khối lượng m chuyển động dưới tác dụng của các rr r lực F1 , F2 ,..., Fn . Phương trình cơ bản của động lực học đối với chất điểm là: ur uu r r dV = ∑ FK m.W = m. dt 20
- ur r ur dr ur ur rr dV r r dr = m.dV. = m.dV.V = ∑ FK .dr Nhân vô hướng hai vế với d r là ta được: m. dt dt (*) ur m.V 2 m ur ur ur ur rr = .2.V.dV = m.V.dV và ∑ FK .dr = ∑ dA K . Ta có dT = d 22 Thay vào (*) ta được (13.48), định lý được chứng minh. dT ∑ dA K = ∑ N K . Vậy ta có = Chú ý : Chia cả hai vế (13.48) cho dt ta được : dt dt định lý sau : Đạo hàm theo thời gian động năng của chất điểm bằng tổng công suất của dT ∑ dA K = ∑ NK = các lực tác dụng lên chất điểm. (13.49) dt dt b, Định lý 2: Vi phân động năng của cơ hệ bằng tổng đại số công nguyên tố của các ngoại lực và nội lực tác dụng lên cơ hệ. dT = dA e + dA iK (13.50) K Chứng minh: Xét hệ gồm n chất điểm. Công nguyên tố của ngoại lực và nội lực đặt vào chất điểm thứ K là dA e và dA iK . Viết (13.48) cho chất điểm thứ K ta được: K 1 2 d m K VK = dA K = dA e + dA iK K 2 ⇒ Viết chất điểm cộng từng vế (13.48) cho n và 1 dT = ∑ d m K VK = ∑ dA e + ∑ dA iK . 2 K 2 Chú ý : Tương tự định lý 1 ta cũng có định lý sau : Đạo hàm theo thời gian động năng của cơ hệ bằng tổng công suất của các ngoại lực và nội lực tác dụng lên cơ hệ. dT ∑ dA K + ∑ dA K e i = ∑ N e + ∑ N iK = (13.51) K dt dt c, Định lý 3: Biến thiên động năng của chất điểm trên một chuyển dời nào đó bằng tổng đại số công của các lực tác dụng lên chất điểm trên đoạn chuyển dời ấy. 1 1 mV12 − mV02 = ∑ A M0 M1 (13.52) 2 2 1 Chứng minh: Áp dụng (13.48) cho chất điểm ta được : d mV 2 = ∑ dA K . Tích 2 1 1 phân hai vế theo các cận tương ứng với M0 và M1 ta được: mV12 − mV02 = ∑ A M0 M1 2 2 (ĐPCM) d, Định lý 4: Biến thiên động năng của cơ hệ trên một chuyển dời nào đó bằng tổng đại số công của ngoại lực và nội lực tác dụng lên các chất điểm của cơ hệ trên đoạn chuyển dời ấy. T1 − T0 = ∑ A e + ∑ AiK (13.53) K Chứng minh: Viết (13.52) cho chất điểm thứ K của cơ hệ ta có : 1 1 mV12 − mV02 = A e + A iK K 2 2 Viết (13.52) cho mọi chất điểm và cộng từng vế ⇒ T1 − T0 = ∑ A e + ∑ AiK . K Nội lực làm biến đổi động năng của hệ, do vậy định lý động năng cho phép ta nghiên cứu sâu sắc hơn chuyển động của cơ hệ. 21
- V. ĐỊNH LUẬT BẢO TOÀN CƠ NĂNG. 1. Trường lực thế - Thế năng. a, Trường lực: là khoảng không gian vật lý mà khi chất điểm chuyển động trong trường lực chịu tác dụng lực chỉ phụ thuộc vào vị trí của nó. Ví dụ như trường trọng lực, trường các lực đàn hồi… b, Trường lực thế: là trường lực mà công của các lực tác dụng lên chất điểm không phụ thuộc vào dạng quỹ đạo điểm đặt lực mà chỉ phụ thuộc điểm đầu và cuối của nó. Lực do trường lực thế tác dụng lên chất điểm gọi là lực thế. Ví dụ như trường trọng lực, trường lực đàn hồi tuyến tính là trường lực thế, trọng lực, lực đàn hồi tuyến tính là các lực thế. Các trường lực không thế ví dụ như trường lực cản, ma sát … c, Thế năng: Khảo sát cơ hệ có n chất điểm là M1, M (3 ) Z M (1) 1 1r M2,…,Mn. Các chất điểm nằm trong trường lực thế và rr r F1 r M (21) r chịu tác dụng của các lực thế tương ứng là F1 , F2 ,..., Fn . F3 F2 Gọi M K là vị trí của chất điểm M K tại vị trí “0” và M K 0 1 M10 ) ( M (30 ) là vị trí của chất điểm M K tại vị trí “1”. M (20 ) O Thế năng của cơ hệ tại vị trí “1” bằng tổng công Y của các lực thế tác dụng lên cơ hệ khi nó di chuyển từ vị X trí “1” đến vị trí “0”. ∏ M = ∑ A M1 M0 = A1−0 (13.54) K K Chú ý rằng ta có thể chọn vị trí “0” tùy ý nên th ế năng của cơ hệ tại một vị trí nào đó sẽ sai khác một hằng số cộng. Thế năng của cơ hệ tại vị trí “0” luôn bằng không ( Π 0 = 0 ). Vì công của lực trong trường lực thế chỉ phụ thuộc các vị trí đầu cuối của điểm đặt lực nên thế năng chỉ phụ thuộc vị trí của hệ, tức là: Π = Π (x1 , y1 , z1 , x 2 , y 2 , z 2 ,..., x n , y n , z n ) . Hàm Π được gọi là hàm thế. 2. Định luật bảo toàn cơ năng. Định luật: Khi hệ chuyển động trong trường lực thế thì cơ năng (tổng động năng và T1 + Π1 = Π 0 + T0 = cosnt thế năng) của hệ được bảo toàn. (13.55) Chứng minh: Áp dụng định lý động năng (13.53) ta được T1 − T0 = ∑ A e + ∑ AiK . K Khi hệ chuyển động trong trường lực thế ta có: ∑ A K + ∑ A iK = ∑ A K = Π 0 − Π1 , e trong đó Π là thế năng của hệ dưới tác dụng của nội lực và ngoại lực. Vậy ta có: T1 − T0 = Π 0 − Π1 hay T1 + Π1 = Π 0 + T0 = cosnt (ĐPCM) Người ta ký hiệu cơ năng là E và E = T + Π . Hệ thức (13.55) còn được gọi là tích phân năng lượng. Cơ hệ nghiệm đúng (13.55) được gọi là hệ bảo toàn và lực tác dụng lên hệ là lực bảo toàn. Dễ thấy lực thế là lực bảo toàn. Trong trường hợp các lực không bảo toàn (ma sát, lực cản) thì cơ năng của hệ không bảo toàn do có sự trao đổi năng lượng giữa cơ hệ với môi trường xung quanh. Cơ năng của hệ sẽ chuyển hóa thành các dạng năng lượng khác như nhiệt năng, hóa năng, điện năng… 22
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Ngân hàng dề thi cơ học lý thuyết - Đặng Thanh Tân
17 p | 1710 | 542
-
130 câu hỏi trắc nghiệm cơ học lý thuyết
11 p | 1248 | 159
-
Bài giảng Cơ học lý thuyết: Tuần 4 - Nguyễn Duy Khương
18 p | 175 | 20
-
Bài giảng Cơ học lý thuyết: Tuần 11 - Nguyễn Duy Khương
18 p | 153 | 18
-
Bài giảng Cơ học lý thuyết: Tuần 9 - Nguyễn Duy Khương
14 p | 159 | 18
-
Bài giảng Cơ học lý thuyết: Tuần 12 - Nguyễn Duy Khương
7 p | 123 | 17
-
Bài giảng Cơ học lý thuyết: Tuần 10 - Nguyễn Duy Khương
9 p | 228 | 17
-
Bài giảng Cơ học lý thuyết: Tuần 6 - Nguyễn Duy Khương
10 p | 136 | 15
-
Bài giảng Cơ học lý thuyết: Tuần 2 - Nguyễn Duy Khương
19 p | 101 | 15
-
Bài giảng Cơ học lý thuyết: Tuần 13 - Nguyễn Duy Khương
8 p | 140 | 15
-
Bài giảng Cơ học lý thuyết: Tuần 3 - Nguyễn Duy Khương
16 p | 113 | 14
-
Cơ học lý thuyết (Tóm tắt lý thuyết và bài tập mẫu)
71 p | 74 | 13
-
Bài giảng Cơ học lý thuyết - Tĩnh học: Chương 2 - ĐH Công nghiệp TP.HCM
37 p | 91 | 7
-
Bài giảng Cơ học lý thuyết - Tĩnh học: Chương 7 - ĐH Công nghiệp TP.HCM
51 p | 72 | 6
-
Bài giảng Cơ học lý thuyết: Chương 2 - Huỳnh Vinh
40 p | 36 | 4
-
Bài giảng Cơ học lý thuyết: Chương 10 - Huỳnh Vinh
111 p | 35 | 4
-
Bài giảng Cơ học lý thuyết: Chương 11 - Huỳnh Vinh
31 p | 39 | 4
-
Bài giảng Cơ học lý thuyết - Bài 1: Các khái niệm cơ bản
44 p | 36 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn