www.khoabang.com.vn LuyÖn thi trªn m¹ng Phiªn b¶n 1.0
________________________________________________________________________________
C©u I. 1) B¹n ®äc gi¶i nhÐ!
2) Qua kh¶o s¸t, ta ®o¸n r»ng trôc ®èi xøng cña ®å thÞ ®ûêngx=1.Thùc vËy, ®Æt
xX
yY
=+
=
1
th× phû¬ng tr×nh ban ®Çu trë thµnh:Y=X4-8X2+6;
hµm nµy hµm ch½n, do vËy ®å thÞ nhËn trôc O1Y lµm trôc ®èi xøng.
T×m giao víi trôc hoµnh:y=0ÛY=0
ÛX4-8X2+6=0ÞX1234,,, =±410±
Þx1234,,, =1±410±.
C©u II.
1) Theo gi¶ thiÕt, ta ph¶i cã:(x + 1)y + xy + (x - 1)y = π(1)
Ûxy = π
3.
®ã suy ra:
(x + 1)y = π
3+y;(x-1)y=π
3-y
.
xy = π
3nªn (1) suy ra:
0<ππ
3-y<2
3, (2)
0<y+ 3<2
3
ππ
(3)
www.khoabang.com.vn LuyÖn thi trªn m¹ng Phiªn b¶n 1.0
______________________________________________________________________________
(Chóý:(x+1)y>0;(x-1)y>0). (2) (3) suy ra:
-3<y<3
ππ
. (4)
CÇn chän y tháa m·n (4) sao cho:
sin 3+y =sin 3+sin 3-y
222
πππ
Û
1-cos 2
3+2y =3
2+1-cos2
3-2y
ππ
Û
-cos
2
3+2y +cos
2
3-2y =3
2
ππ
Û
2sin 2
3. sin2y = 3
2
πÛsin2y = 3
2.
Do (4) nªn chØ nghiÖm duy nhÊt : yo=π
6,vµdovËyx
o=2.
VËy : nÕu bµi to¸n nghiÖm th× ph¶i xo=2,y
o=π/6.
Thö l¹i, thÊy tháa m·n tÊt c¸c ®iÒu kiÖn ®Æt ra (®Ò nghÞ kiÓm tra).
§¸p : xo=2;y
o=π
6.
2) a) a2=b2+c2- 2bccosA =(b - c)2+ 2bc(1 - cosA)
³2bc (1 - cosA) = 2bc.2sin2A
2
a
4bc sin A
2
2
2
⇒≥ Þsin A
2
a
2bc
.
www.khoabang.com.vn LuyÖn thi trªn m¹ng Phiªn b¶n 1.0
________________________________________________________________________________
b) aA + bB + cC
a+b+c 3
πÛaA + bB + cC
(a + b + c) -A+B+C
30Û
3(aA+bB+cC)-(a+b+c)(A+B+C)
30
()abc++
(a - b)(A - B) + (b - c)(B - C) + (c - a)(C - A)
3(a + b + c) 0.
BÊt ®¼ng thøc cuèi cïng ®óng (v× ®èi diÖn víi gãc lín h¬n ta c¹nh lín h¬n).
C©u III. 1) BiÕn ®æi hµm ®· cho:
y= (x +1)+1+2 x +1+
33
(x +1)+1-2 x +1 =
33
=(1 + x + 1) + (1 - x + 1) =
32 32
=1+ x+1+|1- x+1|
33
³1+ x+1+1- x+1=2
33
.
(Chó ý : hµm x¸c ®Þnh víi "x³-1). VËy miny=2(khi - 1 £x£0).
2) §iÒu kiÖn ®Ó c¨n bËc hai nghÜa : -2 £x£4.
BiÕn ®æi bÊt phû¬ng tr×nh nh sau:
-4 -x + 2x + 8 -(-x + 2x + 8) + a - 10
22
.
®Æt t =-x + 2x + 8
2th× khi -2 £x£4 0£t£3.
a) BÊt phû¬ng tr×nh trë thµnh:
-4t £-t2+a-10Ût2-4t+4£0Ût=2.
®ã gi¶i phû¬ng tr×nh:
-x + 2x + 8
2=2s쨔c:x12,=15.
b)Ta cÇn t×m a sao cho víi "tÎ[0 ; 3] ta ®Òu cã:f(t) = t2-4t+10-a£0Û100
13 0
.()
.()
f
f
Û10 0
70
−≤
−≤
a
aÛa«10.
_www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0
_______________________________________________________
C©u IVa.
1) Gäi AA BB
(x ,y ),(x ,y ) lµ täa ®é c¸c ®iÓm A, B ; gäi 11
I(x,y)
=
lµ trung ®iÓm cña ®o¹n AB ta cã :
2
AA
yx=, 2
BB
yx=, 1AB
1
x(xx)
2
=+
, 22
1AB
1
y(xx)
2
=+
.
Theo gi¶ thiÕt :
AB = 2 22222
AB AB
AB (x x) (x x) 4=− +− =
.
222
AB AB AB
4(xx)(xx)(xx)=− +− + =
222 2
AB AB 1 AB 1
(x x ) [1 (x x ) ] [4x 4x x ][1 4x ]=− ++ = +
2
1AB AB
2
1
4
4x 4x x 4x x
14x
−= =
+
22
1AB 1
22
11
42
4x 2x x 2x
14x 14x
=−=−
++
MÆt kh¸c
=+= + =
22 2 2
1AB AB AB 1AB
11 1
y(xx)[(xx)2xx][4x2xx]
22 2 .
VËy 222
11 11
22
11
12 1
y [4x 2x ] x
214x 14x
=+ =+
++
Do ®ã tËp hîp trung ®iÓm I cña AB lµ ®êng cã ph¬ng tr×nh
2
2
1
yx
14x
=+
+
2) Kh«ng gi¶m tÝnh tæng qu¸t ta cã thÓ gi¶ thiÕt r»ng AB
xx
<
.Khi ®ã ta thÊy diÖn tÝch phÇn mÆt ph¼ng bÞ giíi h¹n bëi
parabol vµ c¸t tuyÕn AB chÝnh lµ :
=− + =
A
A
x
22 2
BAAB
x
1
S(xx)(xx) xdx
2
22 33
BAAB BA
11
(x x)(x x) [x x]
23
=− +=

+++
=− =



22 22
BA BABA
BA
xx xxxx
(x x ) 23
3
BA
1(x x )
6
=−
Râ rµng BA
|x x | AB = 2, ®¼ng thøc x¶y ra
AB A
AB// x x x 1
=
⇔=, B
x1
=
,
nªn 14
S.8
63
≤=
, ®¼ng thøc x¶y ra AB
x1,x1=− = .
C©u IVb.
1) Gäi I, J lÇn lît lµ trung ®iÓm cña AB vµ CD, OK AD.
Tam gi¸c AOD vu«ng ë O. Do ®ã :
_www.khoabang.com.vn LuyÖn thi trªn m¹ng – Phiªn b¶n 1.0
_______________________________________________________
22
R OK KA.KD AI.DJ== = .
MÆt kh¸c, AI : DJ = 1 : 4.
Tõ ®ã AI = R/2 AB = R vµ CD = 4R.
Do SO (ABCD) nªn
22222 2222
SK SH SI SJ SO OK 4R R 5R====+ =+=
SH R 5=.
MÆt kh¸c, AD = BC = AK + DJ =
R5R
2R
22
=+ =
VËy 2
xq
SH
S(R4R5R). 55R
2
=+ + = ;
2
®¸y
SR(R4R)5R=+= ;
2
tp
S5R(15)=+ ;
3
SABCD
10
VR
3
=
2) AD (SOK) SAD) SOK). VËy h×nh chiÕu cña O lªn (SAD) thuéc SK. T¬ng tù víi c¸c mÆt cßn l¹i.
MÆt kh¸c, c¸c tam gi¸c SOK, SOH, SOI vµ SOJ ®Òu vu«ng vµ b»ng nhau nªn c¸c kho¶ng c¸ch tõ O ®Õn 4 mÆt bªn b»ng
nhau.
Râ rµng, víi c¸ch lËp luËn nh vËy h×nh chiÕu cña ®iÓm O' bÊt k× thuéc SO lªn 4 mÆt còng c¸ch ®Òu O'. Muèn O' lµ t©m cÇu
néi tiÕp h×nh chãp, ta vÏ ®êng ph©n gi¸c cña
n
SKO , ®êng nµy c¾t SO ë O'.
B¸n kÝnh mÆt cÇu néi tiÕp b»ng r = O'O = O'E.
SOK
SEO' ta cã :
OK SK SK
EO' SO' SO OO'
==
hay RR5
r2Rr
=
R( 5 1)
r2
=
J
I