Đề thi và đáp án môn Toán cao cấp
lượt xem 507
download
Tài liệu tham khảo về Đề Thi toán cao cấp học phần một. Tài liệu tham khảo cho các bạn sinh viên có tư liệu ôn thi tốt đạt kết quả cao trong các kì thi giữa kì và cuối kì.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi và đáp án môn Toán cao cấp
- Thi toán cao cấp học phần một Trần trung kiên Đề thi số 1 Thi ngày 20/6/2008 – Đề lẻ Câu I: a/ Phát biểu và tổ hợp tuyến tính của một hệ véc tơ và sự biểu diễn tuyến tính của một véc tơ qua một hệ véc tơ trong không gian véc tơ ¡ n . b/ Trong không gian ¡ 3 , cho H = { A 1, 2, 3, } . Biết rằng tập hợp A A X { t, 2 t 1 2 3 } T = t= ( 1 t , 3)∈ ¡ 3 :X = tA 1 + t A 2 + tA 3 ≠ ∅ . Cho nhận định về số phần tử của T. +∞ Câu II: Xét sự hội tụ của chuỗi số ∑( n=1 n + 1 − n − 1) ( 2 +−31(x − 1) ) +∞ b/ Tìm miền hội tụ của chuỗi hàm: ∑ n=1 3n n n Câu III: Cho hệ véc tơ { A 1 = ( 0, ;A 2 = ( 2, ;A 3 = ( 1, ) = ( 2, } . 1, 2) 3, 5) 0, α ;B 4, 7) Với giá trị nào của α thì r { A 1, 2, 3} = r { A 1, 2, 3, } ank A A ank A A B Câu IV: Cho hệ phương trình tuyến tính: A X = Ο, trong đó: 2 −3 5 −3 3 A = 7 −8 1 1 2 1 −2 1 1 0 . −4 −3 1 3 5 Hãy chỉ ra công thức nghiệm tổng quát với x1 ,x4 ,x5 làm ẩn cơ sở và một hệ nghiệm cơ bản của hệ đã cho. H ết 1
- Thi toán cao cấp học phần một Trần trung kiên Đáp án đề thi số 1 ngày 20/6/2008 – Đề lẻ Câu I: b/ Mỗi phần tử của T tương ứng với một cách biểu diễn tuyến tính của X qua hệ véc tơ { A 1, 2, 3} và cũng là tương ứng với một nghiệm của hệ A A phương trình tuyến tính tA 1 + t A 2 + tA 3 = X (*1). 1 2 3 Giả thiết T ≠ ∅ cho phép ta khẳng định hệ phương trình (*1) có nghiệm ⇔ r { A 1, 2, 3} = r { A 1, 2, 3, } . ank A A ank A A X Nếu r { A 1, 2, 3} = 3 thì hệ (*1) chỉ có một nghiệm (vì hệ (*1) là hệ phương ank A A trình tuyến tính Cramer) ⇒ T chỉ có một phần tử. Nếu r { A 1, 2, 3} = 2 thì hệ (*1) có vô số nghiệm phụ thuộc bậc nhất vào ank A A một tham số ⇒ T có vô số phần tử, số các phần tử của nó tương đương với số các điểm của một đường thẳng. Nếu r { A 1, 2, 3} = 1, (tức là 4 véc tơ A 1, 2, 3, tỷ lệ với nhau và có ít ank A A A A X nhất một trong các véc tơ A 1, 2, 3 khác véc tơ không) thì hệ (*1) có vô số nghiệm A A phụ thuộc bậc nhất vào hai tham số ⇒ T có vô số phần tử, số các phần tử của nó tương đương với số các điểm của một mặt phẳng. Nếu r { A 1, 2, 3} = 0 , (tức là cả 4 véc tơ A 1, 2, 3, đều là những véc tơ ank A A A A X không) thì hệ (*1) có vô số nghiệm phụ thuộc bậc nhất vào ba tham số ⇒ T có vô số phần tử, số các phần tử của nó tương đương với số các điểm của toàn không gian ¡ 3. +∞ +∞ Câu II: a/ ∑( n=1 n + 1 − n − 1) = ∑ n=1 2 n+ 1+ n−1 là chuỗi số dương 2 > 1 ⇔ 2n > n + 1 + n − 1 ∀ n ≥ 2 (*1) Nhận thấy rằng n+ 1+ n−1 n * Tam thức bậc 2: y = x2 − x − 1 có 2 nghiệm: x1 = 1 − 5 vµ x2 = 1 + 5 nên 2 2 x2 − x − 1 > 0 ∀ x > 1+ 5 ⇒ n2 − n − 1 > 0 ⇔ n > n + 1 ∀ n ≥ 2 (*2) 2 ( ) 2 * n2 − n + 1 = n − 1 + 3 > 0 ∀ n ⇔ n > n − 1 ∀ n > 1 (*3) 2 4 Từ (*2) và (*3) ⇒ (*1) +∞ +∞ Chuỗi ∑ 1 phân kỳ, theo dấu hiệu so sánh 1 thì chuỗi ∑( n + 1 − n − 1) phân n=1 n n=1 kỳ. 2
- Thi toán cao cấp học phần một Trần trung kiên +∞ 2 1 u Cách 2: Đặt un = n+1+ n−1 , vn = n ⇒ nlm n = 1, mặt khác chuỗi i →+∞ vn ∑1 n=1 n +∞ phân kỳ ⇒ chuỗi ∑( n=1 n + 1 − n − 1) phân kỳ. ( 2 +−31(x − 1) ) +∞ b/ Tìm miền hội tụ của chuỗi hàm: ∑ n=1 3n n n Đề thi số 2 Thi ngày 20/6/2008 – Đề lẻ Câu I: a/ Phát biểu và chứng minh định lý về điều kiện cần và đủ để một hệ véc tơ là phụ thuộc tuyến tính. b/ Dùng định lý trên để chứng tỏ hệ hai véc tơ sau là độc lập tuyến tính: { A1 = (2,3,0,1) 2 = ( ;A } 6,9,0,2) . ( ) +∞ n x+ 5 Câu II: Tìm miền hội tụ của chuỗi hàm: ∑ n n=1 l n + 1) 3x + 1 n( 1 2 −α 2 α Câu III: Cho ma trận A = 1 5 α 1 1 1 −4 2α Với giá trị nào của α thì rankA = 2 ? rankA = 3 ? Câu IV: Cho hệ phương trình tuyến tính: A X = Ο, trong đó: 2 −3 5 −3 3 A = 7 −8 1 1 2 1 −2 1 1 0 . −4 −3 1 3 5 Hãy chỉ ra công thức nghiệm tổng quát với x1 ,x4 ,x5 làm ẩn cơ sở và một hệ nghiệm cơ bản của hệ đã cho. H ết 3
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi và đáp án môn Trắc địa học kỳ 2
3 p | 1447 | 136
-
Ngân hàng đề thi trắc nghiệm nhập môn: Matlab (Có đáp án)
54 p | 1669 | 105
-
Đề thi và đáp án môn: Toán cao cấp A1
3 p | 382 | 63
-
Đề thi và đáp án môn: Toán cao cấp A3
4 p | 655 | 55
-
Đề thi và đáp án môn: Toán cao cấp A2
3 p | 253 | 36
-
Đề thi và đáp án môn Cơ sở công nghệ môi trường - ĐH Dân lập Văn Lang
4 p | 219 | 29
-
Đề thi kết thúc học phần và đáp án môn Cơ sở công nghệ môi trường - ĐH Dân Lập Văn Lang
5 p | 157 | 15
-
Đề thi lần 1 môn Chính sách môi trường - Trường ĐH Dân Lập Văn Lang
2 p | 142 | 12
-
Đáp án môn Toán cao cấp A2 - Đại học Sư phạm Kỹ thuật TP. HCM
2 p | 243 | 12
-
Đề thi học kì 1 môn An toàn lao động và môi trường công nghệ năm 2020-2021 có đáp án - Trường ĐH Sư Phạm Kỹ Thuật TP.HCM
16 p | 17 | 6
-
Đề thi thử đại học lần thứ 4 có đáp án môn: Sinh học - Mã đề thi 142 (Năm học 2011-2012)
9 p | 49 | 4
-
Đề thi học kì 1 môn Toán 1 năm 2023-2024 có đáp án - Trường Đại học Sư phạm Kỹ thuật, TP HCM
6 p | 13 | 4
-
Đề thi thử và đáp án: Môn Hóa học - Số 2
27 p | 105 | 4
-
Đề thi thử và đáp án: Môn Toán học - Số 2
10 p | 60 | 3
-
Đề thi học kì 2 môn Vật lý 1 năm 2022-2023 có đáp án - Trường Đại học Sư phạm Kỹ thuật, TP HCM (CLC)
5 p | 5 | 3
-
Đáp án môn Toán 1 năm học 2019-2020 (Đề 1) - ĐH Sư phạm Kỹ thuật
2 p | 50 | 2
-
Đề thi học kì 2 môn Vật lý 1 năm 2019-2020 có đáp án - Trường Đại học Sư phạm Kỹ thuật, TP HCM
6 p | 1 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn