Toán học lớp 11: Vectơ trong không gian - Thầy Đặng Việt Hùng
lượt xem 92
download
Tài liệu "Toán học lớp 11: Vectơ trong không gian - Thầy Đặng Việt Hùng" tóm lược nội dung cần thiết và cung cấp 1 số bài tập ví dụ hữu ích, giúp các bạn củng cố và nắm kiến thức về vectơ trong không gian thật hiệu quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Toán học lớp 11: Vectơ trong không gian - Thầy Đặng Việt Hùng
- Khóa học Toán Cơ bản và Nâng cao 11 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 01. VÉC TƠ TRONG KHÔNG GIAN Thầy Đặng Việt Hùng [ĐVH] VIDEO và LỜI GIẢI CHI TIẾT CÁC BÀI TẬP chỉ có tại website MOON.VN [Link khóa học: Toán cơ bản và Nâng cao 11] I. CÁC QUY TẮC VÉC TƠ Quy tắc véc tơ đối : Với mọi hai điểm A, B cho trước ta luôn có AB = − BA ⇔ AB + BA = 0 Quy tắc cộng véc tơ : Cho trước hai điểm A, B. Với mọi các điểm M1, M2...Mn ta luôn có hệ thức sau: AB = AM1 + M1M 2 + M 2 M 3 + ... + M n B Quy tắc trừ hai véc tơ : Cho trước hai điểm A, B. Với mọi điểm M ta luôn có AB = MB − MA Quy tắc hình bình hành : AB + AD = AC Cho hình bình hành ABCD, khi đó AB = DC Quy tắc trung tuyến: Cho hai điểm A, B. Nếu M là trung điểm của AB thì ta có MA + MB = 0 hệ thức AM + BM = 0 Quy tắc trung tuyến: Cho tam giác ABC, gọi M và N theo thứ tự là trung điểm AB + AC = 2AM của BC và AC. Khi đó BA + BC = 2BN Quy tắc trọng tâm: Cho tam giác ABC có trọng tâm G như hình vẽ. GA + GB + GC = 0 Khi đó ta có 2 AG = AM = 2GM 3 Nhận xét: + Với mọi điểm I thì ta luôn có IA + IB + IC = 3IG + Điểm G được gọi là trọng tâm tứ diện ABCD khi GA + GB + GC + GD = 0 Ví dụ 1: [ĐVH]. Cho tứ diện ABCD. Xác định các điểm M, N thỏa mãn: a) AM = AB + AC + AD b) AN = AB + AC − AD Hướng dẫn giải: Tham gia khóa Toán Cơ bản và Nâng cao 11 tại MOON.VN để có sự chuẩn bị tốt nhất cho kì thi THPT quốc gia!
- Khóa học Toán Cơ bản và Nâng cao 11 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 a) AM = AB + AC + AD Gọi I là trung điểm của BC, khi đó AB + AC = 2AI Gọi J là điểm đối xứng của A qua I, khi đó ta có 2AI = AJ → AB + AC = AJ Từ đó AB + AC + AD = AJ + AD = 2AE , với E là trung điểm của DJ. Theo bài, AM = AB + AC + AD = 2AE Vậy M là điểm đối xứng của A qua E. b) AN = AB + AC − AD Theo a, ta có AB + AC = 2AI = AJ Gọi J là điểm đối xứng của A qua I, khi đó ta có → AN = AB + AC − AD = AJ − AD = DJ Vậy trong tam giác ADJ ta tạo ra hình bình hành ADJN thì điểm N thỏa mãn yêu cầu này chính là điểm cần tìm. Ví dụ 2: [ĐVH]. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD, G là trung điểm của MN và G1 là trọng tâm tam giác BCD. Chứng minh các hệ thức sau: ( ) ( ) 1 1 a) AC + BD = AD + BC b) MN = AC + BD = AD + BC 2 2 c) GA + GB + GC + GD = 0 d) NA + NB + NC + ND = 4NG, ∀N. e) AB + AC + AD = 3AG 1 Hướng dẫn giải: a) AC + BD = AD + BC Sử dụng quy tắc cộng véc tơ ta có AC = AD + DC ( ) → AC + BD = AD + BC + DC + CD BD = BC + CD Mà DC + CD = 0 → AC + BD = AD + BC. ( ) ( ) 1 1 b) MN = AC + BD = AD + BC 2 2 ( ) 1 Chứng minh: MN = AC + BD ⇔ AC + BD = 2MN 2 AC = AM + MN + NC Theo quy tắc cộng ta có BD = BM + MN + ND ( ) ( ) → AC + BD = AM + BM + 2MN + NC + ND AM + BM = 0 Theo quy tắc trung điểm ta lại có NC + ND = 0 → ( dpcm ) . Từ đó ta được AC + BD = 2MN ( ) 1 Chứng minh: MN = AD + BC 2 Ta có thể chứng minh tương tự như trên, hoặc sử dụng kêt quả câu a là AC + BD = AD + BC ta cũng được điều phải chứng minh. Tham gia khóa Toán Cơ bản và Nâng cao 11 tại MOON.VN để có sự chuẩn bị tốt nhất cho kì thi THPT quốc gia!
- Khóa học Toán Cơ bản và Nâng cao 11 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 c) GA + GB + GC + GD = 0 GA + GB = 2GM ( ) Theo quy tắc trung điểm trong ∆GAB và ∆GCD ta có → GA + GB + GC + GD = 2 GM + GN GC + GD = 2GN Mà G là trung điểm của MN nên GM + GN = 0 → GA + GB + GC + GD = 0. d) NA + NB + NC + ND = 4NG, ∀N. NA = NG + GA NB = NG + GB ( ) Ta có → NA + NB + NC + ND = 4NG + GA + GB + GC + GD = 4NG NC = NG + GC 0 ND = NG + GD e) AB + AC + AD = 3AG1 Sử dụng quy tắc trung tuyến cho ∆ACD ta được AC + AD = 2AN Gọi I là điểm đối xứng của A qua N, khi đó 2AN = AI → AC + AD = AI ( ) Ta có AB + AC + AD = AB + AC + AD = AB + AI = 2AE, với E là trung điểm của BI. Xét trong ∆ABI có BN và AE là các đường trung tuyến, giả sử BN ∩ AE = G′ thì G′ là trọng tâm ∆ABI. 2 Khi đó BG ′ = BN = BG1 → G ′ ≡ G1 . 3 2 2AE AB + AC + AD Mà AG1 = AE = = ← → AB + AC + AD = 3AG1 3 3 3 II. PHÉP PHÂN TÍCH, CHỨNG MINH CÁC BÀI TOÁN LIÊN QUAN ĐẾN VÉC TƠ Ba véc tơ đồng phẳng: Cho ba véc tơ đồng phẳng a, b, c. Khi đó, tồn tại duy nhất một phép phân tích c = ma + nb . Ba véc tơ không đồng phẳng: Cho ba véc tơ đồng phẳng a, b, c. Khi đó, với mỗi véc tơ d thì tồn tại duy nhất một phép phân tích d = ma + nb + pc . Ví dụ 1: [ĐVH]. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hãy phân tích các véc tơ SA, SB, SC, SD theo AB, AC, SO. Hướng dẫn giải: Phân tích SA : 1 1 Ta có SA = SO + OA = SO + CA = SO − AC 2 2 1 → SA = SO − AC 2 Phân tích SB : ( ) 1 SB = SO + OB = SO + OA + AB = SO − AC + AB 2 1 → SB = SO − AC + AB 2 Phân tích SC : 1 SA + SC = 2SO → SC = 2SO − SA = 2SO − SO − AC 2 1 → SC = SO + AC 2 Phân tích SD : 1 SB + SD = 2SO → SD = 2SO − SB = 2SO − SO − AC + AB 2 1 → SD = SO + AC − AB 2 Tham gia khóa Toán Cơ bản và Nâng cao 11 tại MOON.VN để có sự chuẩn bị tốt nhất cho kì thi THPT quốc gia!
- Khóa học Toán Cơ bản và Nâng cao 11 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 Ví dụ 2: [ĐVH]. Cho tứ diện ABCD, gọi M và N theo thứ tự là trung điểm của AB, CD. Chứng minh rằng ba véc tơ MN, BC, AD đồng phẳng. Hướng dẫn giải: Nhận xét: Để chứng minh ba véc tơ MN, BC, AD đồng phẳng ta đi kiểm tra xem có đẳng thức véc tơ nào liên quan đến ba véc tơ trên hay không. Bằng trực quan hình học, ta thấy MN ở giữa BC và AD nên ta sẽ xuất phát từ véc tơ MN đi theo hai hướng là BC và AD. MN = MA + AD + DN Ta có MN = MB + BC + CN ( ) ( ) ( ) → 2MN = MA + MB + BC + AD + DN + CN 0 0 ( ) 1 Từ đó ta có MN = BC + AD , tức là ba véc tơ đồng 2 phẳng. Ví dụ 3: [ĐVH]. Cho hình chóp tam giác S.ABC. Trên đoạn SA lấy điểm M sao cho MS = −2MA và trên đoạn 1 BC lấy điểm N sao cho NB = − NC. Chứng minh rằng ba vectơ AB, MN, SC đồng phẳng. 2 Hướng dẫn giải: Tương tự như ví dụ trên, chúng ta phân tích MN theo hai hướng. MN = MA + AB + BN, (1) Ta có MN = MS + SC + CN, ( 2 ) Nhân cả hai vế của (1) với 2 rồi cộng với (2) ta được ( ) ( ) ( ) 3MN = 2MA + MS + 2AB + SC + 2BN + CN MS = −2MA 2MA + MS = 0 Từ giả thiết 1 ←→ NB = − 2 NC 2NB + NC = 0 2 1 → 3MN = 2AB + SC ⇔ MN = AB + SC 3 3 Vậy ba véc tơ AB, MN, SC đồng phẳng. BÀI TẬP LUYỆN TẬP: Bài 1: [ĐVH]. Cho các điểm A, B, C, D, E, F. Chứng minh rằng a) AB + DC = AC + BD b) AB + CD + EF = AF + ED + CB Bài 2: [ĐVH]. Cho hình hộp ABCD.A′B′C′D′. Chứng minh rằng a) AB + AD + AA ' = AC ' b) A ' B ' + BC + D ' D = A ' C c) Gọi O là tâm của hình hộp. Chứng minh rằng OA + OB + OC + OD + OA ' + OB ' + OC ' + OD ' = 0 Bài 3: [ĐVH]. Cho tứ diện S.ABC. Gọi G là trọng tâm của tam giác ABC. a) Phân tích vectơ SG theo các ba véc tơ SA, SB, SC. b) Gọi D là trọng tâm của tứ diện S.ABC. Phân tích vectơ SD theo ba vectơ SA, SB, SC. Tham gia khóa Toán Cơ bản và Nâng cao 11 tại MOON.VN để có sự chuẩn bị tốt nhất cho kì thi THPT quốc gia!
- Khóa học Toán Cơ bản và Nâng cao 11 – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 Bài 4: [ĐVH]. Cho hình lăng trụ tam giác ABC.A′B′C′ có AA ' = a, AB = b , AC = c . a) Hãy phân tích các vectơ B′C , BC ′ theo các vectơ a, b, c . b) Gọi G′ là trọng tâm tam giác A′B′C′. Biểu diễn véc tơ AG ′ qua các véc tơ a, b, c . Bài 5: [ĐVH]. Cho tứ diện ABCD có trung tuyến qua đỉnh A của tam giác ABC là AN. Lấy điểm M trên AN sao cho AM 3 = . Phân tích véc tơ DM theo DA; DB; DC MN 7 Tham gia khóa Toán Cơ bản và Nâng cao 11 tại MOON.VN để có sự chuẩn bị tốt nhất cho kì thi THPT quốc gia!
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề kiểm tra hình học môn toán lớp 11 học kì 2 trường PTDTNT THPT Tuần Giáo
6 p | 713 | 71
-
Đề kiểm tra 1 tiết Toán 11 - Vecto và quan hệ vuông góc trong không gian (Kèm đáp án)
9 p | 426 | 64
-
Bài giảng Vectơ trong không gian - Hình học 11 - GV. Trần Thiên
14 p | 222 | 44
-
Đề kiểm tra 1 tiết Toán 11 - Vectơ trong không gian (Kèm đáp án)
9 p | 210 | 28
-
Giáo án bài Vectơ trong không gian - Hình học 11 - GV. Trần Thiên
4 p | 238 | 28
-
Đề cương ôn tập giữa học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT Hai Bà Trưng, TT Huế
6 p | 8 | 5
-
Đề cương ôn tập học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT Hai Bà Trưng, TT Huế
6 p | 10 | 5
-
Đề kiểm tra học kì 1 môn Toán lớp 11 năm học 2019-2020 – Trường THPT Trần Phú
3 p | 15 | 4
-
Bài giảng Hình học lớp 11: Vectơ trong không gian - Trường THPT Bình Chánh
21 p | 14 | 4
-
Đề cương ôn tập học kì 2 môn Toán lớp 11 năm 2020-2021 - Trường THPT Hai Bà Trưng, Thừa Thiên Huế
12 p | 11 | 4
-
Đề thi giữa học kì 1 môn Toán lớp 11 năm 2022-2023 có đáp án - Trường THPT Phan Ngọc Hiển – Cà Mau
6 p | 5 | 4
-
Đề thi học kì 2 môn Toán lớp 11 năm 2021-2022 có đáp án - Trường THPT Lê Lợi, Quảng Trị
36 p | 12 | 3
-
Đề cương ôn tập học kì 2 môn Toán lớp 11 năm 2019-2020 - Trường THPT số huyện Bảo Thắng
5 p | 13 | 2
-
Đề kiểm tra 1 tiết môn Hình học lớp 11 năm 2016 – THPT Phan Chu Trinh (Bài số 6)
5 p | 61 | 2
-
Đề thi giữa học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường PTDTNT Phước Sơn
2 p | 5 | 2
-
Đề cương ôn tập học kì 2 môn Toán lớp 11 năm 2020-2021 - Trường THPT Hai Bà Trưng
13 p | 17 | 1
-
Đề kiểm tra chất lượng đầu năm môn Toán lớp 11 năm 2018-2019 - THPT Hàn Thuyên - Mã đề 709
6 p | 63 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn