www.vncold.vn
NH HNG CA HSTHMTTHÂN VÀ NNP
LÊN CÁC THÔNG SNG THM
THE BODY AND BASE DAM PERMEABILITY EFFECT
ON INFILTRATION FLOW DATA
TS. Tô Vn Thanh
TÓM TT
Trong thc t!xây dng công trình th'y, r)tkhó ,- xác ,/nh chính xác
giá tr/h2s4th)m c'a m6t l8p,)t. V8icác ph:;ng pháp và ph:;ng
ti2n k>thu@t hi2nnay cAng chBgiúp các nhà khDosát thi!t l@p,:Ec
khoDng giá tr/bi!n,6ng c'a chúng mà thôi. Chính v@y, ,òi hHi các
nhà thi!t k!phDi dbáo ,:Ec phIm vi dao ,6ng c'a các thông s4dòng
th)m, nh:l:u l:Eng và gradient th)mtrong khoDng bi!n,Ki c'a h2s4
th)m (,Mc bi2t,4i v8i nhNng công trình có ,iOu ki2n,/a ch)t phPc
tIp), ,- k/pthRi,:ara các bi2npháp ,Dm bDo s Kn,/nh th)mcho
công trình. Bài vi!t gi8i thi2u ph:;ng pháp và k!t quDnghiên cPu s
Dnh h:Ung h2s4th)m c'a các l8p,)t nOn,@p,)t lên các thông s4
c'adòng th)mthông qua vi2c giDi các dIng bài toán th)m.
ABSTRACT
In practical construction of hydrology structures, it’s difficult to specify
the permeability of one soil layer exactly. Contemporary methods an
engineering facilities could only help the investigators set up
permeability fluctuation range. Therefore, designers have to anticipate
the fluctuation range of infiltration flow data. Such as the capacity and
infiltration gradient transformation range of permeability (especially at
complicated geological condition structures) to bring out timely
solutions ensuring stable infiltration for the project. This paper
presents method and research results about the effect of dam ground
base layers’ permeability on infiltration flow data by solving the
infiltration problem.
I. $T VN
Mttrong nhng vn quan trng nht cn phi gii quyt khi thit k
công trình thy là d!báo ch thm ca h%th&ng “công trình - nn”. S!ph,c
t-p ca nhng bài toány ./c th0hi%n1ch2: cn phi tính nhàng lo-tcác
yu t&tác ng, nh.:6ahình; các iu ki%n6a chtcông trình; các 8cthù kt
www.vncold.vn
cu cacông trình c:ng nh.các bi%n pháp và kt cu ch&ng thm1thân và nn
công trình; khn<ng dao ng m!c n.=c1th./ng h-l.uv.v… ? chính xác
trong d!báo thm qua công trình còn phBthuc rt nhiu vào  chính xác trong
xác 6nh các tính cht thm ca các lo-it1thân và nn caCpt. M8c dù,
ãcó nhiu thành t!u vphát tri0ncác ph.Fng pháp và ph.Fng ti%n kGthuCt
nhHm xác 6nh các tính cht cFlý cat, vi%c thit lCpcác mô hình tin cCy v
6a cht thy v<n ca h%th&ng Cp-nn” vJnlà vn ph,c t-pvà ch.a./c
gii quyt tri%t0. Tr6s&h%s&thmtrong mt l=pt có th0khác nhau hàng
chBc, thCm chí hàng tr<m ln. Trong nncó kt cu6a tng nhiu l=p ph,c t-p,
giá tr6tính toán các thông s&ca dòng thm phBthucvào s!t.Fng tác cacác
h%s&thm giacác l=pt nn. Mgiai o-n thit k Cpt, iuquan trng cn
phi d!báo ./c khong dao ng ca l.u l./ng, gradient thmvà v6trí .Ong
bão hòa, trên cFs1 ó.a ra các bi%n pháp ch&ng thm cho công trình. Chính vì
vCy, vi%cnghiên c,unh h.1ng h%s&thm cacác l=pt nntrong iu ki%n
6a cht ph,c t-p lên các thông s&dòng thm là ht s,c cn thit.
II. N%IDUNG, PH(NG PHÁP VÀ K*T QUNGHIÊN C,U
?&i t./ng nghiên c,u./c chn Cptá thuc cBmng trình thy
Jumaguzin trên sông Belaia (Liên bang Nga). Thân Cp./cy d!ng bHng á
Y v=i vCt ch&ng thmlà lõi gia th[ng ,ng bHng á t. ?Cpcó chiu dài 595m
v=i chiucao l=n nht là 70m. Thông th.Ong, &i v=i d-ng Cpnh.trên, vi%c
tính toán thm chacn thông qua gii bài toán ph[ng -tu cu. Tuy nhiên,
b,ctranh 6a cht trong nn công trình này rt ph,c t-p, 8c tr.ng b1i tính không
bng nht vcác tính cht thm ca c l=pt d.=i thân Cp. Trên hình 1, th0
hi%n m8t cdt dc caCp, v=i nncông trình bao gbm sáu l=ptcó các giá tr6h%
s&thmkhác nhau (0 Fn gin hóa nh toán, mt s&l=ptcó h%s&thm xp
xanh.nhau ã./cquy vmt l=p). D.=i thân Cpcó b&trí các kt cu ch&ng
thmkhác nhau phBthuc vào iu ki%n6a cht1tfng nFi: t-i lòng sông, nFi
các l=pt nn phía trên có tính thm cao, d.=i lõi giaCpn sâu 30m, b&
trí n<mdãy màng ch&ng thm phun xi m<ng, tf  sâu 30 n120m – hai dãy
màng ch&ng thmphun xi m<ng. Mnn s.On d&c bOphi, trong ph-m vi các l=p
trmtích aluvi, n sâu 45m vCt ch&ng thm “tng trong t” bHng
tông, tf  u 45 n120m - hai dãy màng phun xi m<ng. ?0 ng<n ngfa thm
vòng qua các vai Cp, t-o 2 y màng phun xi m<ng vào sâu 150m m2ibên vai
Cp. Do tính ph,c t-p ca6a cht nn công trình và s!thay Yi kt cu ch&ng
thm dctheo thân Cp, nên cn thit phicó s!so sánh lOi gii gia bài toán
thm ph[ng thm không gian.
?0 gii bài toán 8t ra nói trên, skdBng phn mmFILTR, ./cy d!ng
t-i Bmôn Công trình Thy, tr.Ong TYng h/py d!ng Qu&cgia Mát-xcF-va
(MGSU), d!a trên ph.Fng pháp phn tkhu h-n kt h/p bin phân cBc b[1].
Mô hình FILTR ./cy d!ng trên c1s1tìm nghi%m ca ph.Fng trình vi phân
www.vncold.vn
cFbn calý thuytthm (ph.Fng trình Poison) cho bài toán thm không gian
không Yn6nh:
xyz
d dH d dH d dH dH
K + K + K - = 0
dx dx dy dy dz dz dt




 (1)
Trong ó, H=f(x,y,z,t): Hàm ct n.=c thmbinYitheo thOigian;
kx, ky, kz: H%s&thm ca vCt li%u theo các ph.Fng ta X, Y, Z
: H%s&nhn.=c.
Tìm nghi%m caph.Fng trình (1) là mtiu ht s,ckhó kh<n. Trong bài
này, vi%cxác 6nh giá tr6ct n.=cthm./ctinhành trong quá trình c!cti0u
hóa hàm s&nào ó, hàm này ./cchnsao cho có th0y d!ng ./cthuCttoán
0 giitrên cFs1ph.Fng pháp phn tkhu h-nvà ph.Fng pháp binphân cBc b.
Nu nh.githit rHng m cn tìm có d-ng:
}=
D

2
2 2
1
2xyz
HHHH
K K K H dxdydz
xyzt





 
++ +



 

 





(2)
Theo 6nh lý Eiler, hàm s&}s -tgiá tr6c!c ti0u num s&trong du
tích phân ca nó: f
,...
z
H
,
y
H
,
x
H
,H tha mãn ph.Fng trình Eiler:
x
x
H
f+y
y
H
f+
z
H
f
z
H
= 0 (3)
Nghi%m ca ph.Fng trình (3) c:ng slà nghi%m ca ph.Fng trình (1), nu
nh.thay thvào nó bi0u th,ctrong duch phân ca ph.Fng trình (2) sthu
./c ph.Fng trình Poison (1).
Vì vCy, vi%c gii caph.Fng trình (1) c:ng bng nghƒa v=i tìm giá tr6c!c
ti0u ca hàm (2).
Ph.Fng pháp gii các bài toán thm thuCt toán c!c ti0u hóa ph.Fng
trình (2) ./c trình bày chi tit t-i [1,3].
www.vncold.vn
Hình 1: pt Jumaguzin-m t c"t d#c thân p
Mgiai o-nu, bài toán thm./c gii d.=i d-ng thm ph[ng cho 5 m8t
cdtPK 0+70, PK 1+40, PK 2+66,5, PK3+91, và PK 4+68,8. V6trí các m8t cdt
này ./c th0hi%n t-ihình 1. Vùng tính toán thm ca m2i m8t cdt bao gbmlõi
Cp bHng á sét và nn thm v=i các l=pt không bng cht (kích th.=c vùng
tính toán cho các m8t cdt./c th0hi%n t-i nh 2 và 3). Các l<ng trBbên bHng si
á cui không .avào vùng tính toán do chúng có tính thm rt l=n (h%s&
thm ca vCt li%unày l=n gp khong 9.000 ln so v=i lõi Cp).
?0 nghiên c,u s! nh h.1ng ca h%s&thmt nn (h%s&thm ca lõi
Cp./ccoi là hHng s&) lên các thông s&ca dòng thm,ng dBng lý thuytquy
ho-ch th!c nghi%m [4].
Mm2i m8t cdt, h%s&thm cacác l=pt nnkhác nhau ./cxem là các
yu t&(các bin s&)nh h.1ng n l.u l./ng qua m2i m8t cdtang xét và
gradient thm phân b&theo trBc ca màng hay t.Ong ch&ng thm. S&l./ng các
l=pt nn v=icác tính cht thmkhác nhau (các bin s&)thay Yi tf2 (PK
0+70, PK 4+68,8) n 4 (PK3+91). T-i các m8t cdtPK 1+40 và PK 2+66,5, s&
l./ng bin bHng 3.
?0 ti%n cho vi%ctính toán, h%s&thm vCtlý cat nn./c hi%u
X. M2i bin s&(h%s&thm ca l=pt nn) ./c ly 2 giá tr6:1m,c thp nht
và m,ccao nht (trong ph-m vi tip nhCn) ./c hi%u t.Fng ,ng là -1 và +1
(Xi=±1). ?&i v=icác m8t cdtcó s&bin3, 0 có th0mô phng ht khn<ng
t.Fng tác giacác giá tr6ca bin s&,áp dBng ph.Fng pháp quy ho-ch th!c
nghi%my [4]. Khi óm mBctiêu cn xét (l.u l./ng ho8c gradient thm)
có d-ng nh.sau.
Lõi /0pK=0.01 m/ng./
www.vncold.vn
- V&i m t c"t PK 1+40:
Yi= bo+ b1X1+ b5X5+ b6X6+ b15 X1X5+ b16 X1X6+ b56 X5X6+ b156 X1X5X6(4)
Hình 2: S-phân b/ ng 0ng áp trong m t c"t PK 1+40
I - Bi4u5 phân b/gradien thmJx theo tr7c c8amàng ch/ng thm.
Hình 3: S-phân b/ ng 0ng áp trong m t c"t PK 3+91
I- ng bão hòa trong n?np;
II- Bi4u5 phân b/gradient thmJx theo tr7c c8amàng ch/ng thm.
273.0
250.0
1:2
255.0
235.0
220.0
1:2
1:2 1:2
230.0
1:2
270.0
MNGC
6.0
9.0
22.0
20.4
25.0
200.00 199.0
18.0
9.0
150.00
120.0
I
1:3 1:2
210.0
40000
100.00
50.00
50 0.0 .0300 0 350 0.00 0150 0.02.000 2.0
0.00 50 1000.0
0.0
MNGC 270.0
1:3
251.0
27
235.00
.0251
1:3
15
4.1
9.0 181.00
200.00
25
25
1:2
1:2
3.5
1.7 120.00
150.00
150.00
.0250 0002.00 40000
350 0.0300 0.0
100.00
0.00 100.00050.0 0150.0
273.0