intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Giải tích cao cấp: Chương 3 - Lê Thái Duy

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:190

12
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Giải tích cao cấp: Chương 3 Phép tính vi phân hàm nhiều biến, cung cấp cho người đọc những kiến thức như: hàm nhiều biến; giới hạn-liên tục; đạo hàm-vi phân; cực trị; ứng dụng trong kinh tế. Mời các bạn cùng tham khảo!

Chủ đề:
Lưu

Nội dung Text: Bài giảng Giải tích cao cấp: Chương 3 - Lê Thái Duy

  1. GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 28 tháng 10 năm 2014 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  2. GIẢI TÍCH CAO CẤP ( Mathematics B1 ) Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy Email : ltduyaguns@vnn.vn Tel : 0918614420 AN GIANG University Ngày 28 tháng 10 năm 2014 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  3. BASIC MATHEMATICS Chương III. PHÉP TÍNH VI PHÂN HÀM NHIỀU BIẾN 1.HÀM NHIỀU BIẾN 2.GIỚI HẠN-LIÊN TỤC 3.ĐẠO HÀM-VI PHÂN 4.CỰC TRỊ 5.ỨNG DỤNG TRONG KINH TẾ LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  4. 1.HÀM NHIỀU BIẾN LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  5. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ; LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  6. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  7. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  8. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. Trong kg Oxyz, cho hàm 2 biến f: z = f (x, y ) có tập xác định Df . LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  9. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. Trong kg Oxyz, cho hàm 2 biến f: z = f (x, y ) có tập xác định Df . G = {(x, y , z)|(x, y ) ∈ Df }:đồ thị hàm f. THÍ DỤ 1 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  10. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. Trong kg Oxyz, cho hàm 2 biến f: z = f (x, y ) có tập xác định Df . G = {(x, y , z)|(x, y ) ∈ Df }:đồ thị hàm f. THÍ DỤ 1 q 2014 5 1− x+4y −x 2 −y 2 Tìm tập xác định của hàm f : z = f (x, y ) = √2 x 2 +y 2 −9 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  11. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. Trong kg Oxyz, cho hàm 2 biến f: z = f (x, y ) có tập xác định Df . G = {(x, y , z)|(x, y ) ∈ Df }:đồ thị hàm f. THÍ DỤ 1 q 2014 5 1− x+4y −x 2 −y 2 Tìm tập xác định của hàm f : z = f (x, y ) = √2 x 2 +y 2 −9 f xác  định 5 2 2 ⇔ 2 x + 4y − x − y ≥ 0 2 x +y >32 2 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  12. 1.HÀM NHIỀU BIẾN Quy tắc F : D(⊂ Rn ) → R cho ứng mỗi bộ (x1 , x2 , ..., xn ) ∈ D với phần tử duy nhất y = F (x1 , x2 , ..., xn ) ∈ R ;được gọi là hàm n biến xi (i = 1, n) D:Tập xác định của hàm F. Trong kg Oxyz, cho hàm 2 biến f: z = f (x, y ) có tập xác định Df . G = {(x, y , z)|(x, y ) ∈ Df }:đồ thị hàm f. THÍ DỤ 1 q 2014 5 1− x+4y −x 2 −y 2 Tìm tập xác định của hàm f : z = f (x, y ) = √2 x 2 +y 2 −9 f xác  định 5 2 − y2 ≥ 0 (x − 54 )2 + (y − 2)2 ≤ 89  2 x + 4y − x 16 ⇔ 2 2 2 ⇔ x +y >3 x 2 + y 2 > 32 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  13. LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  14. Trong mp Oxy, dựng 2 đường tròn (C1):x 2 + y 2 = 32 và (C2):(x − 54 )2 + (y − 2)2 = 89 16 . LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  15. Trong mp Oxy, dựng 2 đường tròn (C1):x 2 + y 2 = 32 và (C2):(x − 54 )2 + (y − 2)2 = 89 16 . Phần màu đỏ biểu diển tập điểm (x,y) thỏa hệ bpt điều kiện xác định. LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  16. Trong mp Oxy, dựng 2 đường tròn (C1):x 2 + y 2 = 32 và (C2):(x − 54 )2 + (y − 2)2 = 89 16 . Phần màu đỏ biểu diển tập điểm (x,y) thỏa hệ bpt điều kiện xác định. Do đó phần hình trăng khuyết( bỏ biên trên (C1)) biểu diễn tập xác định của f LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  17. THÍ DỤ 2 LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  18. THÍ DỤ 2 2 2 Đồ thị của hàm hai biến f: f (x, y ) = xe −x −y LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  19. 2.GIỚI HẠN HÀM 2 BIẾN LaTex Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
  20. 2.GIỚI HẠN HÀM 2 BIẾN LaTex > Giảng viên : Lê Thái Duy Website: http://staff.agu.edu.vn/ltduy GIẢI TÍCH CAO Email : ltduyaguns@vnn.vn Tel : CẤP 0918614420 ( Mathematics B1 )
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
3=>0