V i et nam J our nal of M at hem at i cs 33:2 (2005) 135–147
9LHWQDP -RXUQDO
RI
0$7+(0$7,&6
9$67 
On t he Sm o ot hness of Solut ions of t he F irst
Init ial B oundary Value P roblem for Schr¨odinger
Sy st em s in D om ains w it h C onical P oint s
N g uyen M an h H u ng and Cun g T h e A nh
D epart m en t of M athem at ics, H an oi U n iversity of E du cation ,
136 X uan T hu y R oad, H an oi, V iet n am
Received March 12, 2004
Revised March 14, 2005
A b st ract . Som e result s on t he smoot h ness of generalized solut ions of t he first init ial
b oun dary value problem for st rongly Schr¨odinger syst em s in domains wit h conical
p oint s on b oundary are given .
1. Int ro d uct io n
Boundary value problems for Schr¨od inger equat ion s and Schr ¨od inger syst em s in
a nit e cylin der Ω T= Ω ×(0,T) have b een st udied by many a ut hors [4,8,9].
T h e unique solvabilit y of t he r st init ia l b ou ndary valu e pr oblem for st rongly
Schr¨odinger syst ems in an in finit e cylinder Ω = Ω ×(0,) was given in [5]. T he
aim of t his pap er is t o est ab lish som e t heorem s on t he sm oot hness of genera lized
solut ions of t he prob lem in dom ain s wit h conical p oint s on b ou nda ry.
Let Ω be a bounded dom ain in Rn. It s b oundar y Ω is assu med t o b e a n
infin it ely different ia ble surface ever ywhere, except for t he coordin at e or igin, in
a n eighb orhood of which Ω coincides wit h t he cone K=
x:x / |x|G
,where
Gis a sm oot h d om ain on t he unit sph ere Sn1. We int rodu ce some not at ions:
ΩT= Ω ×(0,T),S
T=Ω×(0,T),Ω= Ω ×(0,),S
=Ω×(0,),x =
(x1,... ,xn)Ω,u(x , t )= (u1(x , t ),... ,us(x , t )) is a vect or com plex funct ion,
|Dαu|2=
s
i= 1
|Dαui|2,u
tj=
ju1/ t j,... ,jus/ t j
,|utj|2=
s
i= 1
jui/ t j
2,
dx =dx 1...dxn,r=|x|=
x2
1+···+x2
n.
In t his pap er we use frequ ent ly t he following funct iona l spa ces:
136 N guyen M an h H un g and C ung T he A n h
Hl
β(Ω ) - t he spa ce of all funct ions u(x)= (u1(x),... ,us(x)) which have gen-
eralized derivat ives Dαui,|α|≤ l,1is, sat isfying
u2
Hl
β( ) =
l
|α|= 0
r2 ( β+|α| l)|Dαu|2dx < +.
Hl , k (eγ t ,Ω) - t he sp ace of all fun ct ions u(x , t ) which have generalized deriva-
t ives Dαui,jui
tj,|α|≤ l,1jk,1is, sa t isfyin g
u2
Hl , k (eγ t ,)=
l
|α|= 0
|Dαu|2+
k
j= 1
|utj|2
e2γ t dx dt < +.
In pa rt icular
u2
Hl , 0(eγ t ,)=
l
|α|= 0
|Dαu|2e2γ t dx dt .
Hl , k (eγ t ,Ω) - t he closure in Hl , k (eγ t ,Ω) of t he set of all infinit ely dif-
ferent iable in Ω funct ions wh ich b elong t o Hl , k (eγ t ,Ω) and vanish near
S.
Hl , k
β(eγ t ,Ω) - t he sp ace of all funct ions u(x , t ) which have generalized deriva-
t ives Dαui,jui
tj,|α|≤ l,1jk,1is, sat isfying
u2
Hl , k
β(eγ t ,)=
l
|α|= 0
r2 ( β+|α| l)|Dαu|2+
k
j= 1
|utj|2
e2γ t dx dt < +.
Hl
β(eγ t ,Ω) - t he space of all funct ions u(x , t ) which have generalized deriva-
t ives Dα(ui)tj,|α|+jl,1is, sa t isfying
u2
Hl
β(eγ t ,)=
l
|α|+j= 0
r2 ( β+|α|+jl)|Dαutj|2e2γ t dx dt < +.
Let Xb e a Banach space. Denot e by L(0,;X) t h e spa ce of all m easurab le
funct ions u:(0,) X
t u(t)
, sat isfying
uL( 0 ,;X)=ess sup
t > 0
u(t)
X<+.
Con sider t he differ ent ial op er at or of ord er 2m
L(x , t , D )=
m
|p|,|q|= 0
Dp
ap q (x , t )Dq
,
where ap q are s×s-m at rices of m ea sur able, b ou nded in Ω, com plex funct ions,
ap q = (1)|p|+|q|a
qp . Supp ose t hat ap q a re cont inu ous in xΩ un iformly wit h
O n t he Sm oot hn ess of Sol ut i on s 137
resp ect t o t[0,)if|p|=|q|=m, and t ha t for ea ch t[0,) t he op er at or
L(x , t , D ) is uniform ly ellipt ic in Ω wit h ellip t icit y const ant a0indep endent of
t im e t, i.e., we have
|p|=|q|=m
ap q (x , t )ξpξqηηa0|ξ|2m|η|2,(1.1)
for all ξRn\ {0},ηCs\ {0}and (x , t )Ω.
P ut
B(u, u)(t)=
m
|p|,|q|= 0
(1)|p|
ap q DquDpudx , u(x , t )
Hm , 0(eγ t ,Ω).
F o r a . e . t[0,), t he funct ion x→ u(x , t ) belongs t o
Hm(Ω ). On t he ot her
ha nd, since t he p rincipa l coecient s ap q a re cont inu ous in xΩ uniformly
wit h resp ect t o t[0,) a nd t he const ant a0in (1.1) is independent of t,by
rep ea t ing t he pr oof of G ar dings inequalit y [2, p .44], we have
Lem m a 1.1. T here exist two con st an t s µ0an d λ0(µ0>0,λ00) su ch that
(1)mB(u , u )(t)µ0
u(x , t )
2
Hm( ) λ0
u(x , t )
2
L2( ) (1.2)
for all u(x , t )
Hm , 0(eγ t ,Ω).
T h erefore, using t he t ra nsfor mat ion u=ei λ 0tvif necessary, we can assume
t ha t t he op era t or L(x , t , D )satises
(1)mB(u, u )(t)µ0u2
Hm( ) (1.3)
for all u(x , t )
Hm , 0(eγ t ,Ω). T his in equa lit y is a b asic t ool for pr ovin g t h e
exist ence and uniqu eness of solut ions of a b oun dar y value problem .
2. M ain R esults
In t his p ap er we con sider t h e following problem : F ind a funct ion u(x , t )such
t ha t
(1)m1i L (x , t , D )uut=f(x , t )inΩ ,(2.1)
u|t= 0 = 0,(2.2)
ju
νj
S
= 0,j= 0,... ,m 1,(2.3)
where νis t he out er u nit norma l t o S.
A funct ion u(x , t ) is ca lled a gen era lized solut ion of t he problem (2.1) - (2.3)
in t he space
Hm , 0(eγ t ,Ω) if and only if u(x , t ) b elongs t o
Hm , 0(eγ t ,Ω)
and for each T> 0 t he followin g equ alit y hold s
138 N guyen M an h H un g and C ung T he A n h
(1)m1i
m
|p|,|q|= 0
(1)|p|
T
ap q DquDpηdxdt +
T
uηtdx dt =
T
fηdx dt
(2.4)
for all t est funct ion η
Hm , 1(Ω T) sat isfying η(x , T )= 0.
Denot e by mt h e numb er of mult i-in dices which h ave order not exceeding
m,µ0is t h e const a nt in (1.3). From T heor ems 3.1, 3.2 in [5] and by using
induct ion we obt ain t he following result .
T he orem 2.1. L e t
i) sup
a p q
t
:(x , t )Ω,0 |p|,|q|≤ m
=µ < +;
kap q
tk
µ1,µ
1=co n s t >0,for 2kh+ 1;
ii) ftkL(0,;L2(Ω )), forkh+ 1;
iii) ftk(x , 0) = 0,for kh.
T hen for every γ> γ
0=m
µ
2µ0
, the problem (2.1) -(2.3) has exactly on e
gen eralized solu tion u(x , t )in the space
Hm , 0(eγ t ,Ω). M oreover, u(x , t )has
derivat ives wit h respect t o tup to order hbe lon gin g t o
Hm , 0(e( 2 h+ 1 ) γ t ,Ω)
an d t he followin g est im at e holds
uth2
Hm , 0(e( 2 h+ 1 ) γ t ,)C
h+ 1
k= 0
ftk2
L( 0 ,;L2( ) ) ,
where Cis a posit ive con stan t in depen den t of uan d f.
From now on for t he sake of brevit y, we will writ e γhinst ead of (2h+ 1)γ
(h= 1,2, ..., ).
In or der t o st udy t he sm oot hness wit h resp ect t o (x , t ) of generalized solu-
t ions of t h e problem (2.1) - (2.3), we assume t h at coefficient s ap q (x , t )ofthe
op erat or L(x , t , D ) are inn it ely d iffer ent iable in Ω. In addit ion, we also as-
su me t hat ap q and it s all derivat ives a re b oun ded in Ω.
F irst , we pr ove t h e following lemma.
Lem m a 2.1. L e t f , f t,f t t L(0,;L2(K)) an d f(x , 0) = ft(x , 0) = 0.If
u(x , t )
Hm , 0(eγ t ,Ω)is a gen eralized solu tion of t he problem (2.1) -(2.3) in
the space
Hm , 0(eγ t ,Ω)such that u0when ever |x|> R,R=con st, t hen
uH2m , 1
m(eγ1t,K )an d t he followin g est im at e holds
u2
H2m , 1
m(eγ1t, K )C
f2
L( 0 ,;L2(K) ) +ft2
L( 0 ,;L2(K) ) +ft t 2
L( 0 ,;L2(K) )
,
where C=co n s t .
P roof. R ewr it e t he syst em (2.1) in t he following form
O n t he Sm oot hn ess of Sol ut i on s 139
(1)m
m
|p|,|q|= 0
Dp
ap q (x , t )Dqu
=F , (2.5)
where F=i(ut+f). From T heor em 2.1 it follows t hat FL2(K) for a.e.
t[0,).
Con sider t h e sequ ence of dom ains
Ωk=
xK:2
k |x| 2k+ 1
,k= 1,2, ...
Ch oosing a sm oot h domain Ω 2,0su ch t ha t Ω 2Ω2,0
Ω1Ω2Ω3
.By t he
t heorem on t he sm oot hness of solut ions of ellipt ic pr oblems in a sm oot h d om ain
[3, T h. 17.2, p. 67], we obt ain
2,0
|Dαu(x , t )|2dx C
2,0
F(x , t )
2+
u(x , t )
2
dx , |α| 2m , C = const.
Hence
2
|Dαu(x , t )|2dx C
123
F(x , t )
2+
u(x , t )
2
dx , |α| 2m , C = const.
(2.6)
By subst it u t ing x=4
2k1x(k1>2) in (2.5) and applying t he est imat e (2.6), we
have
2
|Dα
xu(x,t)|2dx C1
123
F(x,t)
2
4
2k1
4m
+
u(x,t)
2
dx ,C1= const .
R et ur ning t o va riables x1,... ,xn,weobtain
k1
|Dαu(x , t )|2r2 ( |α| m)dx
C2
k11k1k1+ 1
F(x , t )
2r2m+r 2 m
u(x , t )
2
dx , C 2= const.
Sum ming t hese inequalit ies for a ll k1>2weobtain
k > 2k
Dαu(x , t )
2r2 ( |α| m)dx
C3
k > 1k
F(x , t )
2r2m+r2m
u(x , t )
2
dx , C3= const.
(2.7)