intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

CÁC ĐỊNH LÝ HÌNH PHẲNG

Chia sẻ: Trần Bá Trung | Ngày: | Loại File: PDF | Số trang:6

419
lượt xem
108
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

CÁC ĐỊNH LÝ HÌNH PHẲNG (tt) 1.7 Định lý Ptolemy và Bất đẳng thức Ptolemy Định lý Ptolemy và bất đẳng thức Ptolemy là một trong những định lý hay và thú vị nhất của hình học phẳng sơ cấp. Có nhiều bài viết và chuyên đề viết về vấn đề này, vì thế trong phần này tôi chỉ trình bày định lý chính và ứng dụng trong việc giải toán. Các mở rộng của định lý này xin đọc trong các tài liệu tham khảo. ...

Chủ đề:
Lưu

Nội dung Text: CÁC ĐỊNH LÝ HÌNH PHẲNG

  1. CÁC ĐỊNH LÝ HÌNH PHẲNG (tt) 1.7 Định lý Ptolemy và Bất đẳng thức Ptolemy Định lý Ptolemy và bất đẳng thức Ptolemy là một trong những định lý hay và thú vị nhất của hình học phẳng sơ cấp. Có nhiều bài viết và chuyên đề viết về vấn đề này, vì thế trong phần này tôi chỉ trình bày định lý chính và ứng dụng trong việc giải toán. Các mở rộng của định lý này xin đọc trong các tài liệu tham khảo. Bài toán 7a (Định lý Ptolemy). Cho tứ giác lồi ABCD. Khi đó ABCD là tứ giác nội tiếp khi và chỉ khi: AC.BD  AB.CD  AD.BC Hướng dẫn. Định lý này có nhiếu cách chứng minh, phần này trình bày cách chứng minh đơn giản và dễ hiểu nhất. Trên đoạn thẳng AC lấy điểm E sao cho ∠ABE = ∠ DBC. Suy ra ΔABE ∼ Δ DBC và Δ CBE ∼ Δ DBA, Từ đó ta có AB.CD = AE.BD và BC.AD = CE.BD Suy ra AB.CD + CE.BD = AE.BD + CE.BD = AC.BD @ Định lý Ptolemy có phát biểu khá đơn giản, tuy nhiên có nhiều ứng dụng trong việc giải toán, sau đây chúng ta áp dụng định lý Ptolemy để chứng minh một số định lý hình học khác. Bài toán 7a.1. Chứng minh rằng: sin(α + β) = sinα cosβ + cosα sinβ (với α , β, α + β là các góc nhọn). Hướng dẫn. Dựng đường tròn đường kính AC và lấy B, D ở hai nửa đường tròn khác nhau sao cho ∠BAC = α và ∠ DAC = β . Khi đó:
  2. sinα cosβ + cosα sinβ = (BC/AC). (AD/AC) + (AB/AC).(CD/AC) = (AB.AD + BC.AD)/AC2 = AC.BD/AC2 = BD/AC = sinBAD = sin(α + β ) @ Bài toán 7a.2. (Hệ thức Feuerbach) Cho tứ giác ABCD nội tiếp trong một đường tròn, khi đó BD2.SACD = CD2.SABD + AD2.SBCD (3) Hướng dẫn Ta có: 1 1 1 S ACD  AD.CD sin D, S ABD  AB. AD.sin B, S BCD  BC.CD.sin C 2 2 2 Suy ra  3  BD 2 AD.CD.sin D  CD 2 AB. AD sin A  AD2 .CB.CD sin C  BD 2 .sin D  CD. AB.sin A  ADCB.sin C Áp dụng định lý sin ta có sinA/sinD = sinC/sinD=BD/AC và áp dụng Ptolemy suy ra điều cần chứng minh. Bài toán 7a.3. (Định lý Carnot) Trong tam giác nhọn ABC nội tiếp trong đường tròn O bán kính R. Gọi x, y, z là cỏc khoảng cách từ O đến BC, CA, AB tương ứng. Khi đó x + y + z = R +r trong đó r là bán kính đường tròn nội tiếp tam giác Hướng dẫn. Gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB tương ứng. Áp dụng định lý Ptolemy cho tứ giác nội tiếp AEOF, ta được AF.OE + AE.OF = AO.EF ⇔ c.y + b.z = R.a Tương tự c.x + az = R.b, ay + bx = R.c Cộng các đẳng thức vế theo vế, ta được (b+c)x + (c+a)y + (a+b)z = R(a+b+c)
  3. ⇔ (a+b+c)(x+y+z) = R(a+b+c) + ax + by + cz ⇔ x+y+z=R+r (Vì ax + by + cz = 2SOBC + 2SOCA + 2SOAB = 2SABC và r = S/p) Viết dưới dạng lượng giác, định lý Carnot chính là hệ thức: cosA + cosB + cosC = 1 + r/R. Chú ý hệ thức này đúng với mọi tam giác. Với hệ thức hình học, định lý Carnot vẫn đúng trong trường hợp tam giác tù, nhưng nếu chẳng hạn A tù thì ta có –x + y + z = R + r. Một số bài tập áp dụng định lý Ptolemy Bài toán 7a.4 (Các công thức liên quan đến đường chéo của tứ giác nội tiếp) Cho tứ giác ABCD nội tiếp đường tròn (O; R) có = , = , = , = và = , = . Chứng minh rằng khi đó p  ac  bd  ad  bc  , q  ac  bd  ab  cd  và ab  cd ad  bc 1 S ABCD   ab  cd  ac  bd  ad  bc  4R Bài toán 7a.5. Cho tam giác ABC nội tiếp trong đường tròn (O) và AC = 2AB. Các đường thẳng tiếp xúc với đường tròn (O) tại A, C cắt nhau tại P. Chứng minh rằng BP đi qua điểm chính giữa của cung BAC. Bài toán 7a.6 Cho tam giác ABC có I là tâm đường tròn nội tiếp, O là tâm đường tròn ngoại tiếp và trọng tâm G. Giả sử rằng OIA = 900. Chứng minh rằng IG song song với BC. Bài toán 7a.7. (IMO Shortlist) Giả sử M, N là các điểm nằm trong tam giác ABC sao cho AM . AN BM .BN CM .CN MAB = NAC, MBA = NBC. Chứng minh rằng:   1 AB. AC BA.BC CA.CB Bài toán 7a.8. (VMO 1997) Trong mặt phẳng, cho đường tròn tâm O bán kính R và điểm P nằm trong được tròn (OP = d < R). Trong tất cả các tứ giác lồi ABCD nội tiếp trong đường tròn (O) và có hai đường chéo AC và BD vuông góc và cắt nhau tại P, hãy tìm tứ giác có chu vi lớn nhất và tứ giác có chu vi nhỏ nhất. Tính các giá trị lớn nhất và nhỏ nhất này theo R và d. Định lý Ptolemy có nhiều mở rộng, một trong số đó là bất đẳng thức Ptolemy, có khá nhiều ứng dụng.
  4. Bài toán 7b (Bất đẳng thức Ptolemy). Cho 4 điểm A, B, C, D. Khi đó ta luôn có AC.BD  AB.CD  AD.BC . Dấu “=” xảy ra khi và chỉ khi ABCD là tứ giác nội tiếp. Bài toán này cũng có nhiều cách chứng minh, trong tập tài liệu này bạn sẽ thấy những cách chứng minh đó. Trong phần này tôi xin trình bày cách chứng minh quen thuộc nhất. Sau đẩy là một số ứng dụng của bất đẳng thức Ptolemy. Bài toán 7b.1. (Điểm Toricelli) Cho tam giác ABC, tìm điểm M trong tam giác sao cho MA + MB + MC đạt giá trị nhỏ nhất. (Điểm M được gọi là điểm Toricelli) Bài toán 7b.2. (Bđt Erdos – Mordell) Cho tam giác ABC, M là một điểm nằm trong tam giác. Đặt x1 = MA, x2= MB, x3 = MC và p1, p2 ,p3 là khoảng cách từ M đến các cạnh của tam giác. Khi đó x1  x2  x3  p1  p2  p3 . Một số bài toán áp dụng bđt Ptolemy Từ phương pháp chứng minh trong bài toán điểm Toricelli ta thấy, bất đẳng thức ptolemy có ứng dụng nhiều trong việc đánh giá độ dài các đoạn thẳng, cụ thể để đánh giá biểu thức có dạng: pMA  qMB , ta dựng điểm N thỏa pNA  qNB . Khi đó, áp dụng bđt Ptolemy cho tam tứ giác ABMN ta có : AM .BN  AN .BM  AB.MN p  AM . AN  AN .BM  AB.MN q q. AB.MN  pAM  qBM  AN Vì N là cố định, việc đánh giá pMA  qMB chuyển thành việc đánh giá MN. Sau đây là một số ví dụ.
  5. Bài toán 7b.3.Cho điểm M nằm trong góc nhọn xOy. Hai điểm A, B lần lượt thay đổi trên Ox, Oy sao cho 2OA = 3OB. Tìm vị trí của A, B sao cho 2MA + 3MB đạt giá trị nhỏ nhất. Hướng dẫn. Áp dụng bất đẳng thức Ptolemy cho tứ giác OAMB, ta có OA.MB + OB.MA  OM.AB. Từ đó 2OA..MB + 2.OB.MA  2.OM.AB ⇔ 3OB.MB + 2.OB.MA  2.OM.AB ⇔ 2MA + 3MB  2.OM.(AB/OB) Vì tam giác OAB luôn đồng dạng với chính nó nên AB/OB là một đại lượng không đổi. Từ đó suy ra 2MA + 3MB đạt giá trị nhỏ nhất bằng 2.OM.(AB/OB). Dấu bằng xảy ra khi và chỉ khi tứ giác OAMB nội tiếp. Bài toán 7b.4 : Một lục giác có độ dài 6 cạnh đều bằng 1. Chứng minh rằng lục giác đó có ít nhất một đường chéo chính nhỏ hơn hay bằng 2. (Đường chéo chính là đường chéo chia lục giác thành hai tứ giác). Hướng dẫn. Không ngờ gợi ý cho lời giải bài toán này lại là một đẳng thức lớp một: « 1 với 1 là 2 ». Và để thực hiện phép cộng hai cạnh thành ra đường chéo đó, ta sẽ áp dụng bất đẳng thức Ptolemy. Xét lục giác ABCDEF. Xét tam giác ACE. Không mất tính tổng quát, có thể giả sử CE là cạnh lớn nhất trong tam giác. Áp dụng bất đẳng thức Ptlemy cho tứ giác ACDE, ta có: AC.DE + AE.CD  AD.CE Từ đó, do CD = DE = 1 và CE  AC, CE  AE nờn ta suy ra AD  2 (đpcm). Bài tập áp dụng bất đẳng thức Ptolemy Bài toán 7b.5(IMO SL 1997) Cho lục giác lồi ABCDEF cú AB = BC, CD = DE, EF = FA. Chứng minh rằng BC/BE + DE/DA + FA/FC ≥ 3/2. Dấu bằng xảy ra khi nào? Bài toán 7b.5 (IMO 2001) Cho tam giác ABC với trọng tâm G và độ dài các cạnh a = BC, b = CA, c = AB. Tìm điểm P trên mặt phẳng tam giác sao cho đại lượng AP.AG + BP.BG + CP.CG đạt giá trị nhỏ nhất và tínm giá trị nhỏ nhất đó theo a, b, c. Bài toán 7b.5Cho đường tròn (O) và dõy cung BC khác đường kính. Tìm điểm A thuộc cung lớn BC của đường tròn để AB + 2AC đạt giá trị lớn nhất. Bài toán 7b.5 Lục giác lồi ABCDEF có ABF là tam giác vuông cân tại A, BCEF là hình bình hành. AD = 3, BC = 1, CD + DE = 2 2 . Tính diện tích lục giác.
  6. Bài toán 7b.6. Cho tam giác ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Chứng minh rằng ∠OIA ≥ 900 khi và chỉ khi AB + AC ≤ 2BC
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2