Chuyên đề 1: Khảo sát hàm số và các bài toán liên quan - GV. Nguyễn Bá Trung
lượt xem 7
download
Mời các bạn cùng tham khảo chuyên đề 1 "Khảo sát hàm số và các bài toán liên quan" dưới đây để nắm bắt được những kiến thức về khảo sát hàm số, các bài toán liên quan đến khảo sát hàm số, toán điều kiện của tham số,...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chuyên đề 1: Khảo sát hàm số và các bài toán liên quan - GV. Nguyễn Bá Trung
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN 1. CÁC BÀI TOÁN LIÊN QUAN KHẢO SÁT HÀM SỐ ax b 1.1 Hàm số y cx d 1.1.1 BÀI TOÁN ĐIỀU KIỆN CỦA THAM SỐ: 2 x 4 Bài toán 1. Tìm m để đường thẳng y = 2x + m cắt đồ thị hàm số y = tại hai điểm phân biệt A, x 1 B khi đó tìm quỹ tích trung điểm của AB. 2x 1 Bài toán 2. Tìm m để đường thẳng y = x + m cắt đồ thị hàm số y = tại hai điểm phân biệt x 1 A, B sao cho tam giác OAB vuông tại O. 2x 1 Bài toán tương tự: Cho hàm số y có đồ thị (C). Tìm m để đường thẳng d: y x m cắt (C) x 1 tại hai điểm phân biệt A, B sao cho OAB vuông tại O. Bài toán 3. Tìm tất cả các giá trị của m sao cho đường thẳng d: y x m cắt đồ thị (C) của hàm x 1 số y tại hai điểm phân biệt A, B sao cho tam giác IAB có diện tích bằng 4 với I (1;1) x 1 Bài toán 4. Tìm tất cả các giá trị của m để đường thẳng y = -x + m cắt đồ thị 2x 1 hàm số y = tại hai điểm phân biệt A, B sao cho tiếp tuyến tại A và B song song với nhau. x2 Bài toán 5. Tìm tất cả các giá trị của m sao cho đường thẳng y = x + m x 1 cắt đồ thị y = tại hai điểm phân biệt A, B và cắt hai tiệm cận của đồ thị hàm số tại hai điểm M, x 1 N sao cho M, N chia đoạn thẳng AB thành ba đoạn thẳng bằng nhau. 2x 1 Bài toán 6. Tìm m để đường thẳng y = -x + m cắt đồ thị hàm số y = tại hai điểm phân biệt x 1 A, B sao cho tam giác IAB đều với I (1;2) 2x 1 Bài toán 7. Cho hàm số: y (C) x 1 Tìm các giá trị của tham số m sao cho (D) y=x+m .cắt (C) tại 2 điểm phân biệt M, N sao cho tổng hệ số góc của tiếp tuyến tại M và N bằng -6 x 1 Bài toán 8. (ĐH 2011A)Cho hàm số y có đồ thị (C).Chứng minh rằng với mọi m đường thẳng 2x 1 y = x + m luôn cắt đồ thị (C) tại hai điểm phân biệt A và B. Gọi k1, k2 là hệ số góc của các tiếp tuyến với (C) tại A và B. Tìm m để tổng k1+k2 đạt giá trị nhỏ nhất 2x 1 Bài toán 9. Cho hàm số: y có đồ thị (C) x 1 Tìm các giá trị của tham số m sao cho (D) y=x+m .cắt (C) tại 2 điểm phân biệt M, N sao cho tiếp tuyến tại M và N tạo với nhau góc 600. x 1 Bài toán 10. Tìm m sao cho đường thẳng y = x + m cắt đồ thị hàm số y = . tại hai điểm A, B sao x 1 cho I(1;1) nhìn A, B dưới một góc 1200. mx 4 Bài toán 11. Cho hàm số y .Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên xm TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 1
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN khoảng (;1) . 2x m 1 Bài tương tự: Tìm m sao cho hàm số y đồng biến trên (1;+ ) xm 2x 1 Bài toán 12.Cho hàm số y có đồ thị là (C). Chứng minh rằng đường thẳng d: y x m luôn x2 cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. x2 Bài tương tự: Chứng minh rằng đường thẳng d: y x m luôn cắt đồ thị (C): y tại hai điểm x 1 phân biệt A, B. Tìm m để đoạn AB có độ dài nhỏ nhất. x 3 Bài toán 13. Cho hàm số y có đồ thị (C). Đường thẳng d qua điểm I (1;1) hệ số góc k .Tìm k x 1 sao cho d cắt đồ thị (C) tại hai điểm M, N và I là trung điểm của đoạn MN. 2x 4 Bài toán 14. Cho hàm số y có đồ thị (C). Gọi (d) là đường thẳng qua A(1; 1) và có hệ số góc 1 x k. Tìm k để (d) cắt (C) tại hai điểm M, N sao cho MN 3 10 . 2x 2 Bài toán 15. Cho hàm số y (C). Tìm m để đường thẳng (d): y 2 x m cắt (C) tại hai x 1 điểm phân biệt A, B sao cho AB 5 . x 1 Bài toán tương tự:Cho hàm số y có đồ thị (C). Tìm các giá trị của tham số m sao cho đường x m thẳng (d): y x 2 cắt đồ thị (C) tại hai điểm A và B sao cho AB 2 2 . x2 Bài toán 16. Cho y có đồ thị (H), A(1;0), đường thẳng d qua A, hệ số góc k. Tìm k để d cắt x 1 (H) tại M,N x M 1 x N sao cho AM 2 AN . 1.1.2 BÀI TOÁN TÌM ĐIỂM: 2x 1 Bài toán 1. Cho hàm số y có đồ thị (C). Tìm điểm M thuộc đồ thị (C) để tiếp tuyến của (C) x 1 tại M với đường thẳng đi qua M và giao điểm hai đường tiệm cận có tích các hệ số góc bằng –9. 2x 1 Bài toán 2. Cho hàm số y có đồ thị (C). Tìm trên (C) những điểm có tổng khoảng cách đến x 1 hai tiệm cận của (C) nhỏ nhất. x5 Bài toán tương tự:. Tìm điểm A trên đồ thị hàm số y = để tổng khoảng cách từ A đến hai x2 đường tiệm cận nhỏ nhất. 3x 4 Bài toán 3. Cho hàm số y có đồ thị (C). Tìm các điểm thuộc (C) cách đều 2 tiệm cận. x2 x2 Bài toán tương tự. Tìm điểm A trên đồ thị hàm số y = cách đều hai đường tiệm cận. x 3 TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 2
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN x2 Bài toán tương tự. Tìm điểm A trên đồ thị hàm số y = cách đều hai trục tọa độ x2 2x 4 Bài toán 4. Cho hàm số y có đồ thị (C). Tìm trên (C) hai điểm đối xứng nhau qua đường x 1 thẳng MN biết M(–3; 0) và N(–1; –1). x 1 Bài toán tương tự. Tìm hai điểm A, B trên đồ thị hàm số y = đối xứng nhau qua đường thẳng y x 1 = -2x 2x Bài toán 5. Cho hàm số y có đồ thị (C). Tìm trên đồ thị (C) hai điểm B, C thuộc hai nhánh sao x 1 cho tam giác ABC vuông cân tại đỉnh A với A(2; 0). Chú ý: Tam giác ABC vuông cân tại A mà AB (a;b) thì AC (b;-a) hoặc AC (-b;a) 2x 1 Bài toán 6. Cho hàm số y có đồ thị (C). Tìm tọa độ điểm M (C) sao cho khoảng cách từ x 1 điểm I (1; 2) tới tiếp tuyến của (C) tại M là lớn nhất. 2x 1 Bài toán tương tự:. Tìm điểm A thuộc đồ thị hàm số y = sao cho khoảng cách từ điểm x2 I (-2;2) tới tiếp tuyến tại A lớn nhất. x2 Bài toán 7. Cho hàm số y có đồ thị (C).Tìm những điểm trên đồ thị (C) cách đều hai điểm 2x 1 A(2; 0) và B(0; 2). x3 Bài toán 8. Cho hàm số y có đồ thị (C) .Tìm trên hai nhánh của đồ thị (C) hai điểm A và B x 1 sao cho AB ngắn nhất. x5 Bài toán tương tự: . Tìm điểm A và B trên hai nhánh đồ thị hàm số y = để AB ngắn nhất x2 Bài toán 9. Tìm tất cả các điểm thuộc Oy mà từ mỗi điểm đó chỉ kẻ được đúng 1 tiếp tuyến tới đồ thi x 1 (C) của hàm số y = . x 1 2x 3 Bài toán 10. Cho hàm số y có đồ thị (C). Tìm trên (C) những điểm M sao cho tiếp tuyến tại x2 M của (C) cắt hai tiệm cận của (C) tại A, B sao cho AB ngắn nhất. x 1 Bài toán tương tự: Tìm điểm thuộc đồ thị (C) y = sao cho tiếp tuyến tại điểm đó cắt hai tiệm x 1 cận tại A và B sao cho AB ngắn nhất 2x 3 Bài toán 11. Cho hàm số y . Cho M là điểm bất kì trên (C). Tiếp tuyến của (C) tại M cắt các x2 đường tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. 2x 1 Bài toán 12. Cho hàm số y có đồ thị (C). Gọi I là giao điểm của hai tiệm cận. Tìm điểm M x 1 thuộc (C) sao cho tiếp tuyến của (C) tại M cắt 2 tiệm cận tại A và B với chu vi tam giác IAB đạt giá trị TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 3
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN nhỏ nhất. 3 x 5 Bài toán 13. Tìm hai điểm A, B thuộc đồ thị hàm số y = đối xứng nhau qua điểm I (1;-2) 4x 2 x1 Bài toán 14. Cho hàm số y . Cho M là điểm trên (C). Tiếp tuyến của (C) tại M cắt các đường x 1 tiệm cận của (C) tại A và B. Gọi I là giao điểm của các đường tiệm cận. Tìm toạ độ điểm M sao cho đường tròn nội tiếp tam giác IAB có bán kính r 3 5 . x2 Bài toán 15. Cho hàm số y (H). Tìm trên (H) những điểm M có toạ độ nguyên x 1 x 1 Bài toán 16. Tìm hai điểm A, B thuộc đồ thị (C) của hàm số y = sao cho tam giác IAB đều với I x 1 (1;1) x5 Bài toán 17. Tìm điểm A trên đồ thị (C) của hàm số y = để khoảng cách từ A đến đường thẳng x2 d: y = -x nhỏ nhất 1.1.3 BÀI TOÁN CHỨNG MINH TÍNH CHẤT CỦA HÀM PHÂN THỨC: x2 Bài toán 1. Cho hàm số : y (C) Chứng minh rằng mọi tiếp tuyến của đồ thị (C) đều lập với x 1 hai đường tiệm cận một tam giác có diện tích không đổi. x 1 Bài toán tương tự: Cho hàm số. y= . Chứng minh rằng mọi tiếp tuyến của đồ thị hàm số tạo với 2 x 1 tiệm cận 1 có diện tích không đổi .Tìm điểm đồ thị sao cho tiếp tuyến tại điểm đó tạo với 2 tiệm cận 1 có chu vi nhỏ nhất x3 Bài toán 2. Cho hàm số y . Cho điểm Mo ( xo ; yo ) thuộc đồ thị (C). Tiếp tuyến của (C) tại M0 x 1 cắt các tiệm cận của (C) tại các điểm A và B. Chứng minh Mo là trung điểm của đoạn thẳng AB. x2 Bài toán 3. Cho hàm số: y có đồ thị (C). Chứng minh rằng với mọi giá trị m thì trên (C) luôn x2 x yA m 0 có cặp điểm A, B nằm về hai nhánh của (C) và thỏa A . xB yB m 0 x 1 Bài toán 4. Chứng minh rằng với mọi giá trị của m, đường thẳng y = x + m cắt đồ thị y = tại x 1 hai điểm phân biệt A, B và cắt hai tiệm cận của đồ thị hàm số tại hai điểm M, N và MN có chung trung điểm với đoạn thẳng AB mx m 1 Bài toán 5. cho hàm số y = . C MR m 1 đồ thị luôn tiếp xúc với 1 đường thẳng cố x m 1 định 1.1.4 BÀI TOÁN VIẾT PHƯƠNG TRÌNH TIẾP TUYẾN: TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 4
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN 2x Bài toán 1. Cho hàm số y (C). Viết phương trình tiếp tuyến của đồ thị (C), biết rằng khoảng x2 cách từ tâm đối xứng của đồ thị (C) đến tiếp tuyến là lớn nhất. 2x 1 Bài tập tương tự: Tìm điểm A thuộc đồ thị (C) y sao cho khỏng cách từ I 2;2 tới tiếp x2 tuyến tại A lớn nhất. x2 Bài toán 2. Cho hàm số y (1). Viết phương trình tiếp tuyến của đồ thị hàm số (1), biết tiếp 2x 3 tuyến đó cắt trục hoành, trục tung lần lượt tại hai điểm phân biệt A, B và tam giác OAB cân. Bài toán tương tự: 2x 1 1. Viết phương trình tiếp tuyến của đồ thị hàm số y = sao cho tiếp tuyến tạo với hai trục toạ độ x 1 một tam giác cân. 2x 1 2. Cho hàm số y = . Viết pt T2 biết T2 song song với đường thẳng y =-x x 1 2x 1 Bài toán 3. Cho hàm số y = . Lập phương trình tiếp tuyến của đồ thị (C) sao cho tiếp tuyến này x 1 cắt các trục Ox, Oy lần lượt tại các điểm A và B thoả mãn OA = 4OB. x2 Bài toán 4. Cho hàm số: y (C). Cho điểm A(0; a) . Tìm a để từ A kẻ được 2 tiếp tuyến tới đồ x 1 thị (C) sao cho 2 tiếp điểm tương ứng nằm về 2 phía của trục hoành. 2x 1 Bài toán 5. Cho hàm số y . Viết phương trình tiếp tuyến của (C), biết khoảng cách từ điểm I(1; x 1 2) đến tiếp tuyến bằng 2. 2x 1 Bài toán 6. Cho hàm số y . Viết phương trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến x 1 cách đều hai điểm A(2; 4), B(4; 2). 2x 3 Bài toán 7. Cho hàm số y (C). Viết phương trình tiếp tuyến tại điểm M thuộc (C) biết tiếp x2 · 4 tuyến đó cắt tiệm cận đứng và tiệm cận ngang lần lượt tại A, B sao cho côsin góc ABI bằng , với 17 I là giao 2 tiệm cận. x 1 Bài toán 8. Viết phương trình tiếp tuyến của đồ thị y = . biết tiếp tuyến tạo với trục Oy và đường x 1 thẳng y = x + 2 một tam giác vuông cân. 1.2 HÀM SỐ y = ax3 + bx2 + cx + d 1.2.1 TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ: 1 Bài toán 1. Cho hàm số y (m 1) x3 mx2 (3m 2) x (1) 3 Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên tập xác định của nó. Bài toán tương tự. Với giá trị nào của m hàm số y = x3 + (m-1)x2 + (m2-4)x + 9 đồng biến trên R TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 5
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN Bài toán 2. Cho hàm số y x3 3 x2 mx 4 (1) Tìm tất cả các giá trị của tham số m để hàm số (1) đồng biến trên khoảng (; 0) . Bài toán 3. Cho hàm số y 2 x 3 3(2 m 1) x 2 6 m( m 1) x 1 có đồ thị (Cm). Tìm m để hàm số đồng biến trên khoảng (2; ) Bài toán 4. Cho hàm số y x3 (1 2m) x 2 (2 m) x m 2 . Tìm m để hàm đồng biến trên 0; . 1 3 Bài toán 5. Với giá trị nào của a hàm số y = x + ax2 + 4x + 3 nghịch biến trên một khoảng có độ 3 dài bằng 2. a b c 0 Bài toán 6. Cho ba số thực a, b, c thỏa mãn chứng minh rằng 2 abc 2 ab bc ca 3 1 Bài toán 7. Tìm m để hàm số y x3 mx 2 m 6 x 2m 1 đồng biến trên (1;2) 3 1 Bài toán 8. Tìm m để hàm số y x3 2 x 2 m 3 x m đồng biến trên (0;+ ) 3 1 Bài toán 9. Tìm m để hàm số y x3 mx 2 x m đồng biến trên (-3;-1) 3 1 Bài toán 10. Tìm m để hàm số y x3 m 1 x 2 2 m 3 x 1 3 đồng biến trên (-3;-1) 1 Bài toán 11. Tìm m để hàm số y x3 mx 2 2m 1 x 3 m 3 đồng biến trên (0;+ ) 1 Bài toán 12. Tìm m để hàm số y x3 mx 2 m 3 x 1 3 đồng biến trên (-1;+ ) 1 Bài toán 13. Tìm m để hàm số y x3 mx 2 2m 3 x m 1 3 Có khoảng nghịch biến ngắn nhất 1 Bài toán 14. Tìm m để hàm số y x3 mx 2 2m 3 x m 1 3 Có khoảng nghịch biến chứa điểm x = 1. 1.2.2 CỰC TRỊ Bài toán 1. cho hàm số y x3 3 x2 mx m –2 (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành. Bài toán 2. Cho hàm số y x3 (2m 1) x2 (m2 3m 2) x 4 (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu nằm về hai phía của trục tung. 1 Bài toán 3. Cho hàm số y x3 mx 2 (2m 1) x 3 (m là tham số) có đồ thị là (Cm). 3 Xác định m để (Cm) có các điểm cực đại, cực tiểu nằm về cùng một phía TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 6
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN đối với trục tung. Bài toán 4. Cho hàm số y x3 3 x 2 mx 2 (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu cách đều đường thẳng y x 1 . Bài toán 5. Cho hàm số y x3 3mx2 4m3 (m là tham số) có đồ thị là (Cm). Xác định m để (Cm) có các điểm cực đại và cực tiểu đối xứng nhau qua đường thẳng y = x. Bài toán 6. Cho hàm số y x3 3mx2 3m 1 . Với giá trị nào của m thì đồ thị hàm số có điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x 8y 74 0 . Bài toán 7. Cho hàm số y x3 3 x2 mx có đồ thị (C).Với giá trị nào của m thì đồ thị (C) có các điểm cực đại và điểm cực tiểu đối xứng với nhau qua đường thẳng d: x – 2 y – 5 0 . Bài toán 8. Cho hàm số y x3 3(m 1) x2 9 x m 2 (1) có đồ thị là (Cm). Với giá trị nào của m thì đồ thị hàm số có điểm cực đại và điểm cực tiểu 1 đối xứng với nhau qua đường thẳng d: y x . 2 Bài toán 9. Cho hàm số y x 3(m 1) x 2 9 x m , với m là tham số thực. Xác định m để hàm số 3 đã cho đạt cực trị tại x1 , x 2 sao cho x1 x 2 2 . Bài toán 10. Cho hàm số y x3 (1 2m) x2 (2 m) x m 2 , với m là tham số thực. Xác định m 1 để hàm số đã cho đạt cực trị tại x1, x2 sao cho x1 x2 . 3 1 3 1 Bài toán 11. Cho hàm số y x (m 1) x2 3(m 2) x , với m là tham số thực. Xác định m để 3 3 hàm số đã cho đạt cực trị tại x1, x2 sao cho x1 2 x2 1 . Bài toán 12. Cho hàm số y 4 x3 mx2 –3 x . Tìm m để hàm số có hai điểm cực trị x1, x2 thỏa x1 4 x2 . Bài toán 13. Cho hàm số y (m 2) x3 3x2 mx 5 , m là tham số. Tìm các giá trị của m để các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hoành độ là các số dương. Bài toán 14. Cho hàm số y x3 –3 x2 2 . Tìm điểm M thuộc đường thẳng d: y 3 x 2 sao tổng khoảng cách từ M tới hai điểm cực trị nhỏ nhất. Bài toán 15. Cho hàm số y x3 (1–2m) x2 (2 – m) x m 2 có đồ thị (C). Tìm các giá trị của m để đồ thị (C) có điểm cực đại, điểm cực tiểu, đồng thời hoành độ của điểm cực tiểu nhỏ hơn 1. Bài toán 16. Cho hàm số y x3 3mx 2 3(m 2 1) x m3 m có đồ thị (C) Tìm m để đồ thị (C) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số đến gốc tọa độ O bằng 2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến gốc tọa độ O. Bài toán 17. Cho hàm số y x3 3mx2 3(1 m2 ) x m3 m2 có đồ thị (C). Viết phương trình đường thẳng qua hai điểm cực trị của đồ thị (C). Bài toán 18. Cho hàm số y x3 3x 2 mx 2 có đồ thị là (Cm). Tìm m để (Cm) có các điểm cực đại, cực tiểu và đường thẳng đi qua các điểm cực trị song song với đường thẳng d: y 4 x 3 . TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 7
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN Bài toán 19. Cho hàm số y x3 3x 2 mx 2 có đồ thị là (Cm). Tìm m để (Cm) có các điểm cực đại, cực tiểu và đường thẳng đi qua các điểm cực trị tạo với đường thẳng d: x 4 y – 5 0 một góc 450 . Bài toán 20. Cho hàm số y x3 3 x2 m có đồ thị (C) Xác định m để đồ thị (C) có hai điểm cực trị · A, B sao cho AOB 1200 . Bài toán 21. Cho hàm số y x3 –3mx2 3(m2 –1) x – m3 (Cm). Chứng minh rằng (Cm) luôn có điểm cực đại và điểm cực tiểu lần lượt chạy trên mỗi đường thẳng cố định. Bài toán 22. . CMR m h/s y=2x3-3(2m+1)x2+6m(m+1)x+1 luôn đạt cực trị tại x1;x2 và x1-x2 không phụ thuộc vào m 2 Bài toán 23. Cho hàm số f (x) = x3 + (cosa - 3sina)x2 - 8(1 + cos2a)x + 1 3 CMR hàm số luôn có cực trị. Gọi hoành độ các điểm cực trị là x1 , x2 CMR: x12 x22 18 1 Bài toán 24.. Tìm m để hàm số: y x 3 (m 2) x 2 (5m 4) x m 2 1 đạt cực trị tại x1 ; x 2 thoả 3 mãn: x1 1 x 2 . 1 Bài toán 25. Tìm m để hàm số: y x 3 (m 3) x 2 4(m 3) x m 2 m 3 đạt cực trị tại x1 ; x 2 thoả mãn: 1 x1 x 2 Bài toán 26. Cho hàm số y x 3 3 x 2 3(m 2 1) x 3m 2 1 Tìm m để đồ thị hàm số có cực đại cực tiểu cách đều gốc toạ độ O. Bài toán 27. Tìm m để hàm số y x3 3x 2 3mx 3 có cực trị sao cho gốc tọa độ cách đều hai điểm cực trị của đồ thị hàm số đó Bài toán tương tự. Tìm m để hàm số y x3 3 x 2 3mx 2 có cực trị sao cho gốc tọa độ cách đều hai điểm cực trị của đồ thị hàm số đó Bài toán 28. Cho hàm số y x3 3x 2 4 có đồ thị (C). Viết phương trình của parabol (P) đi qua hai điểm cực trị của đồ thị (C) và tiếp xúc đường thẳng y 2 x 2 . 1.2.3 BÀI TOÁN TƯƠNG GIAO Bài toán 1. Cho hàm số y = x3 + 3x2 + mx + 1 có đồ thị (C) Tìm m để đường thẳng d: y = 1 cắt đồ thị (C) tại ba điểm phân biệt A(0; 1), B, C sao cho các tiếp tuyến của đồ thị hàm số (1) tại B và C vuông góc với nhau. Bài toán 2. Cho hàm số y x3 –3 x 1 có đồ thị (C) và đường thẳng (d): y mx m 3 . Tìm m để (d) cắt (C) tại M(–1; 3), N, P sao cho tiếp tuyến của (C) tại N và P vuông góc với nhau. Bài toán 3. Cho hàm số y x3 3x2 4 có đồ thị (C). Gọi (d) là đường thẳng đi qua điểm A(2; 0) có hệ số góc k. Tìm k để (d) cắt (C) tại ba điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau. Bài toán tương tự: Cho hàm số y x3 3 x có đồ thị (C) Chứng minh rằng khi m thay đổi, đường thẳng (d): y m( x 1) 2 luôn cắt đồ thị (C) tại một điểm M cố định và xác định các giá trị của m để (d) cắt (C) tại 3 điểm phân biệt M, N, P sao cho tiếp tuyến của (C) tại N và P vuông góc với nhau. Bài toán 4. Cho hàm số y x3 3mx2 3(m2 1) x (m2 1) có đồ thị (C). Tìm các giá trị của m để TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 8
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN đồ thị (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ dương. 1 2 Bài toán 5. Cho hàm số y x3 mx2 x m có đồ thị (Cm ) . Tìm m để (Cm ) cắt trục hoành tại 3 3 3 điểm phân biệt có tổng bình phương các hoành độ lớn hơn 15. Bài tập tương tự: Cho hàm số y x3 3mx 2 3x 3m 2 có đồ thị (Cm ) . Tìm m để (Cm ) cắt trục hoành tại 3 điểm phân biệt có tổng bình phương các hoành độ lớn hơn 15 Bài toán 6. Cho hàm số y x 3 3x 2 9 x m , trong đó m là tham số thực. Tìm tất cả các giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. Bài toán tương tự: Cho hàm số y x3 3mx2 9 x 7 có đồ thị (Cm), trong đó m là tham số thực. Tìm m để (Cm) cắt trục hoành tại 3 điểm phân biệt có hoành độ lập thành cấp số cộng. Bài toán 7. Cho hàm số y x3 3mx 2 mx có đồ thị (Cm), trong đó m là tham số thực. Tìm m để (Cm) cắt đường thẳng d: y x 1 tại 3 điểm phân biệt có hoành độ lập thành cấp số nhân. Bài toán 8. Cho hàm số y x3 2 mx2 (m 3) x 4 có đồ thị là (Cm) (m là tham số). và đường thẳng (d): y x 4 , điểm K(1; 3). Tìm các giá trị của m để (d) cắt (Cm) tại ba điểm phân biệt A(0; 4), B, C sao cho tam giác KBC có diện tích bằng 8 2 . Bài toán 9. Cho hàm số y x3 3 x2 4 có đồ thị là (C). Gọi dk là đường thẳng đi qua điểm A(1; 0) với hệ số góc k (k ¡ ) . Tìm k để đường thẳng dk cắt đồ thị (C) tại ba điểm phân biệt A, B, C và 2 giao điểm B, C cùng với gốc toạ độ O tạo thành một tam giác có diện tích bằng 1 . Bài toán 10. Cho hàm số y x3 3 x2 2 có đồ thị là (C). Gọi E(1;0). Viết phương trình đường thẳng qua E và cắt (C) tại ba điểm E, A, B phân biệt sao cho diện tích tam giác OAB bằng 2. Bài toán 11. Cho hàm số y x3 mx 2 có đồ thị (Cm).Tìm m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất. Bài toán tương tự: Cho hàm số y 2 x3 3(m 1) x2 6mx 2 có đồ thị (Cm) Tìm m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất. Bài toán 12. Cho hàm số y x3 6 x2 9 x 6 có đồ thị là (C). Định m để đường thẳng (d ) : y mx 2m 4 cắt đồ thị (C) tại ba điểm phân biệt. Bài toán 13. Cho hàm số y x3 –3 x2 1 có đồ thị (C). Tìm m để đường thẳng (): y (2m 1) x – 4m –1 cắt đồ thị (C) tại đúng hai điểm phân biệt. Bài toán 14. Cho hàm số y x3 3m2 x 2m có đồ thị (Cm). Tìm m để đồ thị (Cm) cắt trục hoành tại đúng hai điểm phân biệt. Bài toán 15. Cho hàm số y x3 3 x 2 có đồ thị (C). Tìm m để phương trình x3 3 x m 0 có ba nghiệm phân biệt x1 , x2 , x3 4 4 4 thỏa mãn: 2 2 2 12 . x1 4 x2 4 x3 4 TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 9
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN 1.2.4 TIẾP TUYẾN Bài toán 1. Cho hàm số y x 3 (1 2m) x 2 (2 m) x m 2 (1) (m là tham số).Tìm tham số m 1 để đồ thị của hàm số (1) có tiếp tuyến tạo với đường thẳng d: x y 7 0 góc , biết cos . 26 Bài toán 2. Cho hàm số y x3 3 x2 1 có đồ thị (C). Tìm hai điểm A, B thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại A và B song song với nhau và độ dài đoạn AB = 4 2 . Bài toán 3. Cho hàm số y 3 x x3 (C). Tìm trên đường thẳng (d): y x các điểm mà từ đó kẻ được đúng 2 tiếp tuyến phân biệt với đồ thị (C). Bài toán 4. Cho hàm số y x3 3 x2 2 (C). Tìm trên đường thẳng (d): y = 2 các điểm mà từ đó kẻ được 3 tiếp tuyến phân biệt với đồ thị (C). 1 Bài toán 5. Cho hàm số y f ( x) mx3 (m 1) x2 (4 3m) x 1 có đồ thị là (Cm). Tìm các giá trị 3 m sao cho trên đồ thị (Cm) tồn tại một điểm duy nhất có hoành độ âm mà tiếp tuyến tại đó vuông góc với đường thẳng (d): x 2 y 3 0 . Bài toán 6. Tìm m sao cho tiếp tuyến tại điểm cố định của đồ thị hàm số y x3 2 x 2 mx 2m 2 tạo với hai tia Ox, Oy một tam giác có diện tích bằng 9. Bài toán 7. Tìm m sao cho tiếp tuyến tại điểm cố định của đồ thị hàm số y x3 2 x 2 mx 2m 2 tạo với hai tia Ox, Oy một tam giác có diện tích nhỏ nhất. 1.3 HÀM SỐ y = ax4 + bx2 + c Bài toán 1. Cho hàm số y x 4 2mx 2 3m 1 , (m là tham số). Tìm m để hàm số đồng biến trên khoảng (1; 2). 1 3 Bài toán 2. Cho hàm số y x4 mx2 . Xác định m để đồ thị của hàm số có cực tiểu mà không 2 2 có cực đại. Bài toán 3. Cho hàm số y f ( x) x 4 2(m 2) x 2 m 2 5m 5 (Cm ) . Tìm các giá trị của m để đồ thị (Cm ) của hàm số có các điểm cực đại, cực tiểu tạo thành 1 tam giác vuông cân. Bài toán 4. Cho hàm số y x 4 2(m 2) x 2 m 2 5m 5 Cm . Với những giá trị nào của m thì đồ thị (Cm) có điểm cực đại và điểm cực tiểu, đồng thời các điểm cực đại và điểm cực tiểu lập thành một tam giác đều. Bài toán 5. Cho hàm số y x4 2mx2 m2 m có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có một góc bằng 120 0 . Bài toán 6. Cho hàm số y x4 2 mx2 m 1 có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1 . Bài toán 7. Cho hàm số y x4 2mx2 2m m4 có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, đồng thời ba điểm cực trị đó lập thành một tam giác có diện tích bằng 4. Bài toán 8. Cho hàm số y x4 mx2 m 1 có đồ thị là Cm Định m để đồ thị Cm cắt trục trục TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 10
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN hoành tại bốn điểm phân biệt. Bài toán 9. Cho hàm số y x 4 2 m 1 x 2 2m 1 có đồ thị là Cm . Định m để đồ thị Cm cắt trục hoành tại 4 điểm phân biệt có hoành độ lập thành cấp số cộng. Bài toán 10. Cho hàm số y x4 –(3m 2) x2 3m có đồ thị là (Cm), m là tham số. Tìm m để đường thẳng y 1 cắt đồ thị (Cm) tại 4 điểm phân biệt đều có hoành độ nhỏ hơn 2. Bài toán 11. Cho hàm số y x 4 2 m 1 x 2 2m 1 có đồ thị là (Cm), m là tham số. Tìm m để đồ thị (Cm) cắt trục hoành tại 4 điểm phân biệt trong đó có ba điểm có hoành độ nhỏ hơn 3. Bài toán 12. Cho hàm số y x 4 2m2 x 2 m 4 2m , với m là tham số. Chứng minh đồ thị hàm số luôn cắt trục Ox tại ít nhất hai điểm phân biệt, với mọi m 0 . Bài toán 13. Cho hàm số y= x 4 +2(m-1)x 2 -2m-1có đồ thị (C). CMR đồ thị (C)luôn đi qua 2 điểm cố định khi m thay đổi. Tìm m để tiếp tuyến tại hai điểm cố định đó vuông góc nhau. Bài toán 14. Cho hàm số y x4 2mx2 2m m4 có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, và khoảng cách giữa hai điểm cực tiểu bằng 4. Bài toán 15. Cho hàm số y x4 2 m2 m 1 x2 m 1 có đồ thị (Cm) . Với những giá trị nào của m thì đồ thị (Cm) có ba điểm cực trị, và khoảng cách giữa hai điểm cực tiểu nhỏ nhất. BÀI TẬP TỰ GIẢI 1. Hàm phân thức 3x 2 1.1 Cho hàm số y (H ) x 1 a) Viết phương trình tiếp tuyến của (H) biết tiếp tuyến tạo với Ox góc 450 b) Viết phương trình tiếp tuyến của (H) biết tiếp tuyến tạo với 2 trục toạ độ một tam giác cân c) Gọi I là giao điểm 2 đường tiệm cận. Tiếp tuyến tại M bất kỳ thuộc (H) cắt 2 tiệm cận tại A,B. Chứng minh M là trung điểm AB d) Chứng minh diện tích tam giác IAB không đổi e) Tìm vị trí M để chu vi tam giác IAB nhỏ nhất xm 1.2 Cho hàm số y ( Hm) x2 Tìm m để từ A(1;2) kẻ được 2 tiếp tuyến AB,AC đến (Hm) sao cho ABC là tam giác đều (A,B là các tiếp điểm) 2mx 3 1.3 Cho hàm số y ( Hm) xm Tìm m để tiếp tuyến bất kỳ của hàm số (Hm) cắt 2 đường tiệm cận tạo thành một tam giác có diện tích bằng 8 2x 1 1.4 Cho hàm số y (H ) x 1 Viết phương trình đường thẳng cắt (H) tại B, C sao cho B, C cùng với điểm A(2;5) tạo thành tam giác đều 2x 1.5 Cho hàm số y (H ) x 1 TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 11
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN Tìm M thuộc (H) sao cho tiếp tuyến tại M của (H) cắt 2 trục Ox, Oy tại A, B sao cho tam giác OAB có 1 diện tích bằng 4 2x 1 1.6 Cho hàm số y (H ) x 1 Gọi I là giao điểm 2 đường tiệm cận của (H). Tìm M thuộc (H) sao cho tiếp tuyến của (H) tại M vuông góc với đường thẳng IM. 2x 1.7 Cho hàm số y (H ) x2 Viết phương trình tiếp tuyến của (H) biết khoảng cách từ tâm đối xứng của đồ thị hàm số (H) đến tiếp tuyến là lớn nhất. xm 1.8 Cho hàm số y x 1 Với giá trị nào của m đồ thị hàm số cắt đường thẳng y=2x+1 tại 2 điểm phân biệt sao cho các tiếp tuyến với đồ thị tại 2 điểm đó song song với nhau. 2x 1 1.9 Chứng minh rằng đồ thị hs y có 2 trục đối xứng x 1 3x 5 1.10 Tìm M thuộc (H) y để tổng khoảng cách từ M đến 2 đường tiệm cận của H là nhỏ nhất x2 x 1 1.11 Tìm M thuộc (H) : y để tổng khoảng cách từ M đến 2 trục toạ độ là nhỏ nhất x 1 2x 1 1.12 Tìm m để hàm số y=-x+m cắt đồ thị hàm số y tại 2 điểm A,B mà độ dài AB nhỏ nhất x2 2x 1 1.13 Cho hàm số y (1) x2 Chứng minh rằng đồ thị H có vô số cặp tiếp tuyến song song, đồng thời các đường thẳng nối tiếp điểm của các cặp tiếp tuyến này luôn đi qua một điểm cố định. 2x 1 1.14 Cho hàm số f x (H) 1 x Gọi (∆) là tiếp tuyến tại điểm M( 0; 1 ) với đồ thị (H). Hãy tìm trên (H) những điểm có hoành độ x > 1 mà khoảng cách từ đó đến (∆) là ngắn nhất. mx 1.15 Cho hàm số y (Hm). Tìm m để đường thẳng d:2x+2y-1=0 cắt (Hm) tại 2 điểm phân biệt x2 3 A, B sao cho tam giác OAB có diện tích bằng 8 2x 3 1.16 Cho hàm số y . Tìm những điểm M thuộc đồ thị sao cho tiếp tuyến tại M cắt hai tiệm cận x2 tại A, B sao cho vòng tròn ngoại tiếp tam giác IAB có bán kính nhỏ nhất. Với I là giao điểm của hai đường tiệm cận 2x 1 1.17 Cho hàm số y (C). Tìm hai điểm M, N thuộc (C) sao cho tiếp tuyến tại M, N song song x2 với nhau và khoảng cách giữa hai tiếp tuyến là lớn nhất TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 12
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN 2x 4 1.18 Cho hàm số y (H). Gọi d là đường thẳng có hệ số góc k đi qua M(1;1). Tìm k để d cắt 1 x (H) tại A, B mà AB 3 10 x2 1.19 Cho hàm số: y (C) x 1 Cho điểm A( 0; a) Tìm a để từ A kẻ được 2 tiếp tuyến tới đồ thị (C) sao cho 2 tiếp điểm tương ứng nằm về 2 phía của trục hoành 2m x 1.20 Cho hàm số y ( H ) và A(0;1) xm Gọi I là giao điểm của 2 đường tiệm cận . Tìm m để trên đồ thị tồn tại điểm B sao cho tam giác IAB vuông cân tại A. x2 1.21 Cho hàm số y (H) 2x 2 Tìm m để đường thẳng (d): y=x+m cắt đồ thị hàm số (H) tại hai điểm phân biệt A, B sao cho 37 OA2 OB 2 2 2x 1 1.22 Cho hàm số y Tìm m để đường thẳng y=-2x+m cắt đồ thị tại hai điểm phân biệt A, B sao x 1 cho tam giác OAB có diện tích bằng 3 3x 2 1.23 Cho hàm số y (1) x 1 Viết phương trình đường thẳng đi qua M(1;3) cắt đồ thị hàm số (1) tại hai điểm phân biệt A, B sao cho AB 2 3 . 3x 1 1.24 Cho hàm số y ( H ) và đường thẳng y (m 1) x m 2 (d) Tìm m để đường thẳng (d) cắt x 1 3 (H) tại A, B sao cho tam giác OAB có diện tích bằng 2 x 1 1.25 Cho hàm số y ( H ) . Tìm điểm M thuộc (H) để tổng khoảng cách từ M đến 2 trục toạ độ là x 1 nhỏ nhất. 2x 1.26 Cho hàm số y = (H)Tìm các giá trị của m để đường thẳng y = mx – m + 2 cắt đồ thị ( H ) tại x 1 hai điểm phân biệt A,B và đoạn AB có độ dài nhỏ nhất. 2x 1 1.27 Cho hàm số y viết phương trình tiếp tuyến cuả HS biết tiếp tuyến tạo với 2 trục tọa độ x 1 tam giác có diện tích bằng 8 2. Hàm bậc ba 2.1 Tìm m để các hàm số sau có cực đại, cực tiểu: TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 13
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN 1 3 a). y x mx 2 (m 6) x 2m 1 3 b). y (m 2) x 3 3x 2 mx 5 c). y 2 x 3 3(2m 1) x 2 6m(m 1) x 1 2.2 Chứng minh rằng với mọi giá trị của m hàm số y = x3 - mx2 - 2x + 1 luôn có cực đại và cực tiểu. 2.3 Tìm m để đồ thị hàm số f ( x) x3 3 x 2 m 2 x m có các điểm cực đại, cực tiểu đối xứng nhau qua 1 5 đường thẳng y x . 2 2 m 1 2.4 Tìm m để hàm số y = x3 - (m-1)x2 + 3(m-2)x + đạt cực trị tại x1 , x2 thỏa mãn 3 3 x1 +2x2 = 1 2.5 Tìm m sao cho hàm số y =x3-(2m+1)x2 +(m2 -3m+2)x+4 có CĐ;CT nằm ở 2 phía Oy 2.6 Cho hàm số y =x 3 3mx 2 9 x 1 . Tìm m để hai điểm CĐ, CT của đồ thị hàm số cách đều đường thẳng y =x+1 2.7 Tìm a để phương trình sau có 6 nghiệm phân biệt x3 6 x 2 9 x 1 log 3 a 2.8 Tìm m để đồ thị hàm số y = x3 + mx2 + 1 cắt đường thẳng y = -x + 1 tại ba điểm phân biệt A (0;1), B, C sao cho tiếp tuyến tại B và C vuông góc nhau. 2.9 Tìm hai điểm A, B thuộc đồ thị hàm số y = x3 - 3x2 + 3 đối xứng nhau qua điểm I (3;9) 2.10 Tìm m để đồ thị hàm số y = x3 - 3mx2 + 2m(m-4)x + 9m2 - m cắt Ox tại ba điểm có hoành độ lập thành cấp số cộng 2.11 Cho hàm số y =-x3+3x+2. Tìm điểm thộc Ox mà từ đó kẻ được 3 tiếp tuyến tới đồ thị 2.12 Cho (Cm ) : y x 3 3(m 1) x 2 2(m 2 4m 1) x 4m(m 1) . Tìm m để (Cm ) cắt Ox tại ba điểm phân biệt có hoành độ lớn hơn 1. 2.13 Tìm m để đồ thị hàm số y = x3 + mx2 + 9x + 4 có hai điểm đối xứng nhau qua gốc tọa độ 2.14 Tìm a để phương trình x3- 3x2+ (3-a)x +15 +a = 0 có ba nghiệm phân biệt x1< x2
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN 1 5 Tìm m để đồ thị hàm số có cực đại cực tiểu đối xứng qua đường thẳng y x 2 2 3 2 2 2.21 Cho hàm số y 2 x 9mx 12m x 1 . Tìm m để hàm số có cực đại cực tiểu đồng thời x 2 CD xCT 2.22 Cho hàm số y x 3 mx m 1 (Cm) Tìm m để tiếp tuyến tại giao điểm cuả (Cm) với trục Oy chắn trên hai trục toạ độ một tam giác có diện tích bằng 8 2.23 Cho hàm số y x 3 3 x 2 mx 1 (Cm) Tìm m để đường thẳng y=1 cắt (Cm) tại 3 điểm phân biệt C(0;1), D,E và các tiếp tuyến tại D và E của (Cm) vuông góc với nhau. 2.24 Cho hàm số y x 3 3 x (C ) và đường thẳng y=m(x+1)+2 (d) Chứng minh rằng đường thẳng (d) luôn cắt (C ) tại một điểm cố định A. Tìm m để đường thẳng (d) cắt (C ) tại 3 điểm A,M,N mà tiếp tuyến tại M và N vuông góc với nhau 19 2.25 Viết các phương trình tiếp tuyến kẻ từ điểm A ;4 đến đồ thị hàm số y 2 x 3 3 x 2 5 12 2.26 Tìm điểm M thuộc đồ thị hàm số y x 3x 2 2 mà qua đó chỉ kẻ được một tiếp tuyến đến đồ 3 thị 2.27 Tìm những điểm thuộc đường thẳng y=2 mà từ đó có thể kẻ được 3 tiếp tuyến đến đồ thị hs y x3 3x 2.28 Tìm những điểm thuộc đường thẳng x=2 từ đó kẻ được 3 tiếp tuyến đến đồ thị hs y x 3 3 x 2.29 Cho hàm số y 2mx 3 (4m 2 1) x 2 4m 2 . Tìm m để đồ thị hs tiếp xúc với trục Ox 2.30 Cho hàm số y x 3 3mx 2 6mx a) Khảo sát và vẽ đồ thị hàm số khi m=1/4 3 b) Biện luận số nghiệm 4 x 3 x 2 6 x 4a 0 2.31 Cho hàm số y 4 x 3 3 x (C ) a) Khảo sát và vẽ đồ thị hàm số (C ) b) Tìm m để phương trình 4 x 3 3 x 4m 3 4m có 4 nghiệm phân biệt 2.32 Cho hàm số y x 3 3mx 2 3(m 2 1) x (m 2 1) Tìm m để hàm số cắt Ox tại 3 điểm phân biệt có hoành độ dương 2.33 Cho hàm số y x 3 2(1 2m) x 2 (5 7 m) x 2(m 5) Tìm m để đồ thị hs cắt Ox tại 3 điểm có hoành độ nhỏ hơn 1. 2.34 Tìm m để đồ thị hs y x 3 3mx 2 2m(m 4) x 9m 2 m cắt trục Ox tại 3 điểm tạo thành 1 cấp số cộng 2.35 Tìm m để hàm số y x 3 (3m 1) x 2 (5m 4) x 8 cắt Ox tại 3 điểm lập thành cấp số nhân 2.36 Tìm m để hàm số y 2 x 3 3(m 3) x 2 18mx 8 có đồ thị tiếp xúc với trục Ox 2.37 Cho hàm số y x3 3 x 2 x 3 a) Khảo sát và vẽ đồ thị hàm số TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 15
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN x3 b) Biện luận theo m số nghiệm phương trình x 2 1 ( ) 2m 1 3 1 3 2.38 Cho hàm số y x 2 x 2 3 x (1) 3 Gọi A, B lần lượt là các điểm cực đại, cực tiểu của đồ thị hàm số (1). Tìm điểm M thuộc trục hoành sao cho tam giác MAB có diện tích bằng 2. 2.39 Cho hàm số y x 3 6 x 2 9 x 4 (1) Xác định k sao cho tồn tại hai tiếp tuyến của đồ thị hàm số (1) có cùng hệ số góc k . Gọi hai tiếp điểm là M 1 , M 2 . Viết phương trình đường thẳng qua M 1 và M 2 theo k . 2.40 Cho hàm số y x 3 3 x 2 4 (1) Giả sử A, B, C là ba điểm thẳng hàng thuộc đồ thị (C), tiếp tuyến với (C) tại A, B, C tương ứng cắt lại (C) tại A' , B ' , C ' . Chứng minh rằng ba điểm A' , B ' , C ' thẳng hàng. 2.41 Cho hàm số y x3 3 x 1 (1) Đường thẳng ( ): y mx 1 cắt (C) tại ba điểm. Gọi A và B là hai điểm có hoành độ khác 0 trong ba điểm nói ở trên; gọi D là điểm cực tiểu của (C). Tìm m để góc ADB là góc vuông. 2.42 Cho hàm số y x 3 3 x 2 3 m 2 1 x 3m 2 1 (1), với m là tham số thực. Tìm m để hàm số (1) có cực đại và cực tiểu, đồng thời các điểm cực trị của đồ thị cùng với gốc toạ độ O tạo thành một tam giác vuông tại O . 2 2.43 Cho hàm số y x 2 2 x 1 (1) Tìm m để đồ thị (C) có hai tiếp tuyến song song với đường thẳng y mx . Giả sử M , N là các tiếp điểm. Hãy chứng minh rằng trung điểm của đoạn thẳng MN là một điểm cố định (khi m biến thiên) 2.44 Cho hàm số y x 3 3x 2 4 (1) Gọi d k là đường thẳng đi qua điểm A 1;0 với hệ số góc k k R . Tìm k để đường thẳng d k cắt đồ thị (C) tại ba điểm phân biệt và hai giao điểm B, C ( B và C khác A ) cùng với gốc toạ độ O tạo thành một tam giác có diện tích bằng 1 . 2.45 Cho hàm số y x 3 3x 2 4 (1) Cho điểm I 1;0 . Xác định giá trị của tham số thực m để đường thẳng d : y mx m cắt đồ thị (C) tại ba điểm phân biệt I , A, B sao cho AB 2 2 . 2.46 Cho hàm số y (m 2)x 3 3x 2 mx 5 , m là tham số Tìm các giá trị của m để các điểm cực đại, cực tiểu của đồ thị hàm số đã cho có hoành độ là các số dương. 2.47 Tìm m để đồ thị hàm số y x3 mx 2 cắt Ox tại một điểm duy nhất 2.48 Tìm m để đồ thị hàm số y x 3 mx 2 2m cắt trục Ox tại một điểm duy nhất 2.49 Cho hàm số y y x3 2 x 2 (1 m) x m (1), m là tham số thực. Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ x1 ; x2 ; x3 thoả mãn điều kiện x12 x2 2 x32 4 2.50 Cho hàm số y x3 3x 2 3(1 m) x 1 3m (Cm). Tìm m để hàm số có cực đại cực tiểu đồng thời các điểm cực trị cùng với gốc toạ độ tạo thành tam giác có diện tích bằng 4 TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 16
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN 2.51 Tìm hai điểm A, B thuộc đồ thị hàm số y x3 3 x 2 1 sao cho tiếp tuyến tại A, B song song với nhau và AB 4 2 2.52 Tìm m để hàm số y x3 mx 2 (2m 1) x m 2 cắt Ox tại 3 điểm phân biệt có hoành độ dương 2.53 Tìm m để đường thẳng y=x+4 cắt đồ thị hàm số y x3 2mx 2 (m 3) x 4 tại 3 điểm phân biệt A, B,C sao cho tam giác MBC có diện tích bằng 4. (Điểm B, C có hoành độ khác 0, M(1;3)) 3. Hàm số trùng phương 3.1 Cho hàm số: y=mx4+(m2-9)x2+10. Xác định m để h/s có 3 cực trị 1 3 3.2 Cho hàm số:f(x)= x 4 mx 2 . Tìm m để h/s chỉ có cực tiểu mà không có cực đại 4 2 3.3 Cho hàm số: f(x) = x 2mx 2m m 4 . Tìm m để h/s có CĐ-CT lập thành tam giác đều. tam giác 4 2 vuông 3.4 Cho hàm số: y=-x4+2x2 . Viết phương trình tiếp tuyến của đồ thị hàm số tại A( 2 ;0) 3.5 Tìm m để đồ thị hàm số y = x4 - mx2 + m - 1 cắt Ox tại bốn điểm phân biệt có hoành độ lập thành cấp số cộng 3.6 Cho hàm số: y=x4-x2+1 .Tìm điểm thuộc Oy mà từ đó kẻ được đúng 3 tiếp tuyến tới đồ thị 3.7 Cho hàm số: y=-x4- 2x2- 1 . Với m=0 tìm điểm thuộc Oy sao cho có thể kẻ được 2 tiếp tuyến vuông góc nhau và đối xứng nhau qua Oy 3.8 Tìm m để đồ thị hàm số y = x4 - mx2 + m - 1 cắt Ox tại bốn điểm phân biệt có giá trị tuyệt đối các hoành độ giao điểm nhỏ hơn 2. 3.9 Cho hàm số y = x 4 + 2m2x2 + 1 (1).Chứng minh rằng đường thẳng y = x + 1 luôn cắt đồ thị hàm số (1) tại hai điểm phân biệt với mọi giá trị của m. 3.10 Cho hàm số y x 4 2m 2 x 2 1 Tìm m để hàm số có 3 điểm cực trị là 3 đỉnh của tam giác vuông cân 3.11 Tìm những điểm thuộc trục tung qua đó có thể kẻ được 3 tiếp tuyến đến đồ thị hs y x 4 2 x 2 1 3.12 Cho hàm số y x 4 2mx 2 m 3 m 2 Tìm m để đồ thị hs tiếp xúc với trục Ox tại 2 điểm phân biệt 3.13 Tìm để phương trình sau có 8 nghiệm phân biệt x 4 6 x 2 5 m 2 2m 3.14 Tìm m để hàm số y x 4 2(m 1) x 2 2m 1 Cắt Ox tại 4 điểm tạo thành cấp số cộng 3.15 Biện luận số nghiệm phương trình x 2 2 ( x 2 1) m 3.16 Cho hàm số y x 4 2mx 2 m 1 (1) , với m là tham số thực. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có diện tích bằng 4 2 . 3.17 Cho hàm số y x 4 2mx 2 m 1 (1) , với m là tham số thực. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có bán kính đường tròn ngoại tiếp bằng 1. 3.18 Cho hàm số y x 4 2mx 2 m 2 m (1) , với m là tham số thực. Xác định m để hàm số (1) có ba điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác có góc bằng 120 . 3.19 Cho hàm số y x 4 2mx 2 (1), với m là tham số thực. TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 17
- Gi¸o viªn: nguyÔn b¸ trung – trêng thpt xu©n giang Mobile: 012469.15999 CHUY£N §Ò 1: KH¶O S¸T HµM Sè Vµ C¸C BµI TO¸N LI£N QUAN Tìm m để đồ thị hàm số (1) có hai điểm cực tiểu và hình phẳng giới hạn bởi đồ thị hàm số và đường thẳng đi qua hai điểm cực tiểu ấy có diện tích bằng 1. 3.20 Cho hàm số y f x x 4 2 m 2 x 2 m2 5m 5 Tìm các giá trị của m để đồ thị hàm số có các điểm cực đại, cực tiểu tạo thành một tam giác vuông cân. 3.21 Cho hàm số y x 4 2 x 2 (C).Lấy trên đồ thị hai điểm A, B có hoành độ lần lươt là a, b.Tìm điều kiện a và b để tiếp tuyến tại A và B song song với nhau. TR£N CON §¦êng vinh quang kh«ng cã dÊu ch©n cña kÎ lêi biÕng 18
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tài liệu tham khảo ôn tập thi tốt nghiệm 2013 chuyên đề 2 khảo sát hàm số
10 p | 620 | 184
-
Chuyên đề 1: Khảo sát hàm số
4 p | 427 | 107
-
Các chuyên đề luyện thi Đại học môn Toán - Chuyên đề 1: Khảo sát hàm số và các bài toán liên quan (Đặng Thanh Nam)
101 p | 245 | 76
-
Chuyên đề 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số
13 p | 286 | 54
-
Toán ôn thi Đại học - Chuyên đề 1: Khảo sát hàm số
68 p | 133 | 46
-
CHUYÊN ĐỀ: KHẢO SÁT HÀM SỐ VÀ CÁC BÀI TOÁN LIÊN QUAN
109 p | 212 | 40
-
Chuyên đề 1: Ứng dụng đạo hàm để xét tính biên thiên và vẽ đồ thị hàm số - Chủ đề 1.5
36 p | 269 | 39
-
Chuyên đề 1: Ứng dụng đạo hàm để xét tính biên thiên và vẽ đồ thị hàm số - Chủ đề 1.2
42 p | 205 | 32
-
Khảo sát hàm số 12 - Phương pháp giải trắc nghiệm: Phần 1
197 p | 133 | 30
-
Chuyên đề 1: Ứng dụng đạo hàm để xét tính biên thiên và vẽ đồ thị hàm số - Chủ đề 1.1
19 p | 233 | 23
-
Chuyên đề luyện thi ĐH phần 1: Khảo sát hàm số
10 p | 154 | 21
-
Chuyên đề 1: Ứng dụng đạo hàm để xét tính biên thiên và vẽ đồ thị hàm số - Chủ đề 1.4
22 p | 144 | 21
-
Khảo sát hàm số và các bài toán liên quan qua các kì thi tuyển sinh ĐH
4 p | 131 | 18
-
Khảo sát hàm số 12 - Phương pháp giải trắc nghiệm: Phần 2
115 p | 95 | 17
-
Luyện thi Đại học môn Toán - Chuyên đề 1: Khảo sát hàm số & các bài toán liên quan
15 p | 91 | 5
-
Đề thi khảo sát lần 1 môn Toán lớp 12 năm 2018-2019 - THPT Chuyên Bắc Ninh - Mã đề 102
6 p | 72 | 2
-
Đề thi khảo sát lần 1 môn Toán lớp 12 năm 2018-2019 - THPT Chuyên Bắc Ninh - Mã đề 105
6 p | 55 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn