YOMEDIA
ADSENSE
Chuyên đề Liên hệ phép chia có dư với phép chia hết - Toán lớp 6
41
lượt xem 6
download
lượt xem 6
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
Chuyên đề Liên hệ phép chia có dư với phép chia hết - Toán lớp 6 giúp các em hệ thống lại những kiến thức lý thuyết của bài phép chia hết và phép chia hết có dư. Đồng thời, với các định hướng gợi ý giải bài tập đi kèm sẽ là tài liệu hữu ích hỗ trợ các em trong quá trình tự trau dồi và rèn luyện kỹ năng giải bài tập.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chuyên đề Liên hệ phép chia có dư với phép chia hết - Toán lớp 6
- 1 CHUYÊN ĐỀ.LIÊN HỆ PHÉP CHIA CÓ DƯ VỚI PHÉP CHIA HẾT. BÀI TOÁN ƯỚC VÀ BỘI. ƯỚC CHUNG (ƯCLN) VÀ BỘI CHUNG (BCNN). A.TRỌNG TÂM CẦN ĐẠT I. KIẾN THỨC CẦN NHỚ. 1. Ước và Bội của một số nguyên Với a, b Z và b 0. Nếu có số nguyên q sao cho a = b.q thì ta nói a chia hết cho b. Ta còn nói a là bội của b và b là ước của a. 2. Nhận xét - Nếu a = b.q thì ta nói a chia cho b được q và viết a : b q. - Số 0 là bội của mọi số nguyên khác 0. Số 0 không phải là ước của bất kì số nguyên nào. - Các số 1 và -1 là ước của mọi số nguyên. 3. Liên hệ phép chia có dư với phép chia hết. Nếu số tự nhiên a chia cho số tự nhiên b được số dư là k thì số (a – k) ⋮ b 4. Ước chung của hai hay nhiều số là ước của tất cả các số đó. Ước chung của các số a, b, c được kí hiệu là ƯC(a, b, c). 5. Bội chung của hai hay nhiều số là bội của tất cả các số đó. Bội chung của các số a, b, c được kí hiệu là: BC(a, b, c). 6. Ước chung lớn nhất. Bội chung nhỏ nhất * Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác không trong tập hợp các bội chung của các số đó. II.BÀI TẬP VẬN DỤNG. Dạng 1: Tìm số tự nhiên n để thỏa mãn điều kiện chia hết (số đã cho là số tự nhiên, số nguyên). Bài tập 1. Tìm số tự nhiên n để (3n + 14) chia hết cho (n + 2). Hướng dẫn Ta có 5n + 14 = 5.(n + 2) + 4. Mà 5.(n +2) chia hết cho (n +2). Do đó (5n + 14) chia hết cho (n +2) 4 chia hết cho (n + 2) (n + 2) là ước của 4. (n +2) 1 ; 2 ; 4 n 0 ; 2. Vậy với n 0; 2 thì (5n + 14) chia hết cho (n +2).
- 2 n 15 Bài tập 2. Tìm số tự nhiên n để là số tự nhiên . n3 Hướng dẫn n 15 Để là số tự nhiên thì (n + 15) chia hết cho (n + 3). n3 [(n + 15) - (n + 3)] chia hết cho (n + 3). 12 chia hết cho (n +3) . (n + 3) là Ư(12) = 1; 2; 3; 4; 6; 12. n 0; 1; 3; 9. n 15 Vậy với n 0; 1; 3; 9thì là số tự nhiên. n3 Bài tập 3.Tìm số tự nhiên n để 3n + 4 chia hết cho n – 1. Hướng dẫn Để 3n 4 n 1 1.(3n 4) 3.(n 1) n 1 7 n 1 hay n – 1 Ư(7) n 1 1 n 2 n 1 7 n 8 Vậy với n = 2 hoặc n = 8 thì 3n + 4 n – 1 Bài tập 4. Tìm số tự nhiên sao cho 4n - 5 chia hết cho 2n - 1 Hướng dẫn Ta có 4n-5 = 2( 2n-1) - 3 Để 4n-5 chia hết cho 2n-1 thì 3 chia hết cho2n-1 Với 2n-1=1 => n=1 Với 2n-1=3 => n=2 vậy n = 1;2 Bài tập 5.Tìm số tự nhiên n để n2 + 3n + 6 n + 3. Hướng dẫn n2 + 3n + 6 n + 3 n (n + 3) + 6 n + 3 6 n + 3 => n + 3 Ư(6) = {1; 2; 3; 6} => n = 0; n = 3. Bài tập 6. Tìm a N để a + 1 là bội của a – 1 Hướng dẫn a 1 a 1 2 Để a +1 là bội của a -1 nên thì là số nguyên 1 a 1 a 1 a 1 => a – 1 ∈ Ư(2) = {-1,1,2}
- 3 => a ={0,2,3} (thỏa mãn a ∈ N) Bài tập 7.Tìm số nguyên n để: 5 n 2 2n chia hết cho n 2 Hướng dẫn Ta có 5 n 2 2n = 5 + n(n – 2) => 5 n2 2n ⋮ (n – 2) khi 5 ⋮ (n – 2) => n – 2 ∈ Ư(5) = {-5, -1, 1, 5} => n ∈ {- 3, 1, 3, 7} n 1 Bài tập 8.Tím tất cả các số nguyên n để phân số n 2 có giá trị là một số nguyên Hướng dẫn n 1 n 2 là số nguyên khi (n+1) (n-2) Ta có (n+1) = (n 2) 3 Vậy (n+1) (n - 2) khi 3 (n-2) (n-2) Ư(3) = 3; 1;1;3 => n 1;1;3;5 n 1 Bài tập 9. Cho A = . Tìm n nguyên để A là một số nguyên. n4 Hướng dẫn n 1 n45 5 A= = 1 n4 n4 n4 Với n nguyên, A nhận giá trị nguyên 5 n + 4 hay n + 4 Ư(5) Lập luận tìm ra được n = -9, -5, -3, 1 4n 5 Bài tập 10.Tìm số nguyên n để phân số có giá trị là một số nguyên 2n 1 Hướng dẫn 4n 5 4n 2 7 n(2n 1) 7 7 Ta có: = n 2n 1 2n 1 2n 1 2n 1 4n 5 7 Vì n nguyên nên để nguyên thì nguyên 2n 1 2n 1 => 2n – 1 Ư(7) = {–7; –1; 1; 7} 2n {– 6; 0; 2; 8} n {– 3; 0; 1; 4} 4n 5 Vậy với n {– 3; 0; 1; 4} thì có giá trị là một số nguyên 2n 1
- 4 2n 2 5n 17 3n Bài tập 11.Tìm số tự nhiên n để biểu thức sau là số tự nhiên: B = n2 n2 n2 Hướng dẫn 2n 2 5n 17 3n 2n 2 5n 17 3n 4n 19 B= n2 n2 n2 n2 n2 4n 19 4(n 2) 11 11 B= 4 n2 n2 n2 11 Để B là số tự nhiên thì là số tự nhiên n2 11 (n+2) n + 2 Ư(11) = 1; 11 Do n + 2 > 1 nên n + 2 = 11 n = 9 Vậy n = 9 thì B N Dạng 2. Tìm số nguyên dương khi biết một số yếu tố trong đó có các dữ kiện về ưcln và bcnn. * Nếu biết ƯCLN(a, b) = K thì a = K.m và b = K.n với ƯCLN(m; n) = 1 (là diều kiện của số m, n cần tìm) , từ đó tìm được a và b. * Nếu biết BCNN (a, b) = K thì ta gọi ƯCLN(a; b) = d thì a = m.d và b = n.d với ƯCLN(m; n) = 1 (là diều kiện của số m, n cần tìm) , từ đó tìm được a và b. Bài tập 1. Tìm hai số nguyên dương a, b biết a + b = 128 và ƯCLN(a, b) = 16. Hướng dẫn Giả sử a ≤ b. Ta có ƯCLN(a, b) = 16 => a = 16m ; b = 16n với m, n thuộc Z+ ; ƯCLN(m, n) = 1 ; m ≤ n. Ta có: a + b = 128 => 16(m + n) = 128 => m + n = 8 Vì ƯCLN(m, n) = 1 nên: Trường hợp 1có: m = 1, n = 7 => a = 16, b = 112 Trường hợp 2 có: m = 3, n = 5 => a = 48, b = 80 Bài tập 2. Tìm hai số nguyên dương a, b biết ab = 216 và ƯCLN(a, b) = 6. Hướng dẫn Giả sử a ≤ b. Do ƯCLN (a, b) = 6 => a = 6m ; b = 6n với m, n thuộc Z+ ; ƯCLN (m, n) = 1 ; m ≤ n. Ta có ab = 6m.6n = 36mn => ab = 216 => mn = 6 Vì ƯCLN (m, n) = 1 nên: Trường hợp 1 có: m = 1, n = 6 => a = 6, b = 36 Trường hợp 2 có: m = 2, n = 3 => a = 12, b = 18.
- 5 Bài tập 3. Tìm hai số nguyên dương a, b biết a/b = 2,6 và ƯCLN (a, b) = 5. Hướng dẫn ƯCLN(a, b) = 5 => a = 5m ; b = 5n với m, n thuộc Z+ ; ƯCLN(m, n) = 1. Ta có: a/b = m/n = 2,6 => m/n = 13/5 , mà ƯCLN(m, n) = 1 => m = 13 và n = 5 => a = 65 và b = 25. Bài tập 4. Tìm a, b biết a + b = 42 và BCNN (a, b) = 72. Hướng dẫn Gọi d = ƯCLN(a, b) => a = md ; b = nd với m, n thuộc Z+ ; ƯCLN(m, n) = 1. Không mất tính tổng quát, giả sử a ≤ b => m ≤ n. Do đó : a + b = d(m + n) = 42 (1) BCNN (a, b) = mnd = 72 (2) => d là ước chung của 42 và 72 => d thuộc {1 ; 2 ; 3 ; 6}. Lần lượt thay các giá trị của d vào (1) và (2) để tính m, n => Chỉ có trường hợp d = 6 => m + n = 7 và mn = 12 => m = 3 và n = 4 (thỏa mãn các điều kiện của m, n). Vậy d = 6 và a = 3.6 = 18 , b = 4.6 = 24 Bài tập 5. Tìm a, b biết a - b = 7, BCNN (a, b) = 140. Hướng dẫn Gọi d = ƯCLN(a, b) => a = md ; b = nd với m, n thuộc Z+ ; ƯCLN(m, n) = 1. Do đó : a - b = d(m - n) = 7 (1’) BCNN (a, b) = mnd = 140 (2’) => d là ước chung của 7 và 140 => d thuộc {1 ; 7}. Thay lần lượt các giá trị của d vào (1’) và (2’) để tính m, n ta được kết quả duy nhất : d = 7 => m - n = 1 và mn = 20 => m = 5, n = 4 (thỏa mãn điều kiện ƯCLN(m, n) = 1) Vậy d = 7 và a = 5.7 = 35 ; b = 4.7 = 28 . Bài tập 6. Tìm hai số nguyên dương a, b biết ab = 180, BCNN (a, b) = 60. Hướng dẫn Ta có ƯCLN(a, b) = ab/BCNN (a, b) = 180/60 = 3. Tìm được (a, b) = 3, bài toán được đưa về dạng Bài tập 2. Kết quả : a = 3, b = 60 hoặc a = 12, b = 15. Bài tập 7. Tìm a, b biết a/b = 4/5 và BCNN (a, b) = 140. Hướng dẫn Đặt ƯCLN(a, b) = d. Vì , a/b = 4/5 , mặt khác ƯCLN(4, 5) = 1 nên a = 4d, b = 5d. Lưu ý BCNN(a, b) = 4.5.d = 20d = 140 => d = 7 => a = 28 ; b = 35.
- 6 Bài tập 8. Tìm hai số nguyên dương a, b biết ab = 216 và ƯCLN (a,b) = 6. Hướng dẫn Giả sử a ≤ b. Do (a, b) = 6 => a = 6m ; b = 6n với m, n thuộc Z+ ; ƯCLN(m, n) = 1 ; m ≤ n. Vì vậy : ab = 6m.6n = 36mn => ab = 216 => mn = 6 Vì ƯCLN(m, n) = 1 nên: Trường hợp 1 có m = 1, n = 6 => a = 6, b = 36 Trường hợp 2 có m = 2, n = 3 => a = 12, b = 18. Bài tập 9. Tìm hai số tự nhiên a và b, biết: BCNN(a,b) = 300; ƯCLN(a,b) =15 và a +15= b. Hướng dẫn + Vì ƯCLN(a, b) = 15, nên ắt tồn tại các số tự nhiên m và n khác 0, sao cho: a = 15m; b = 15n (1) và ƯCLN(m, n) = 1 (2) + Vì BCNN(a, b) = 300, nên theo trên, ta suy ra : BCNN 15m; 15n 300 15.20 BCNN m; n 20 (3) + Vì a + 15 = b, nên theo trên, ta suy ra : 15m 15 15n 15. m 1 15n m 1 n (4) Trong các trường hợp thoả mãn các điều kiện (2) và (3), thì chỉ có trường hợp : m = 4, n = 5 là thoả mãn điều kiện (4). Vậy với m = 4, n = 5, ta được các số phải tìm là : a = 15 . 4 = 60; b = 15 . 5 = 75 Bài tập 10. Tìm hai số a,b biết bội chung nhỏ nhất của a; b là 420, ƯCLN(a;b) = 21 và a + 21 = b Hướng dẫn + Vì ƯCLN(a, b) = 21, nên tồn tại các số tự nhiên m và n khác 0, sao cho: a = 21m; b = 21n (1) và ƯCLN(m, n) = 1 (2) + Vì BCNN(a, b) = 420, nên theo trên, ta suy ra: BCNN 21m; 21n 420 21.20 BCNN m; n 20 (3) + Vì a + 21 = b, nên theo trên, ta suy ra: 21m 21 21n 21. m 1 21n m 1 n (4) Trong các trường hợp thoả mãn các điều kiện (2) và (3), thì chỉ có Trường hợp: m = 4, n = 5 hoặc m = 2, n = 3 là thoả mãn điều kiện (4).
- 7 Vậy với m = 4, n = 5 hoặc m = 2, n = 3 ta được các số phải tìm là: a = 21.4 = 84; b = 21.5 = 105 Bài tập 11. Tìm hai số tự nhiên biết: Hiệu của chúng bằng 84, ƯCLN của chúng bằng 28 và các số đó trong khoảng từ 300 đến 440. Hướng dẫn Gọi hai số phải tìm là a và b ( a, b N* , a > b) Ta có: ƯCLN(a, b) = 28 nên a = 28k và b = 28q . Trong đó k, qN*và k, q nguyên tố cùng nhau. Ta có : a - b = 84 k - q = 3 Theo bài ra: 300 ≤ b < a ≤ 440 10 < q < k q = 11và k = 14. Ta có : a = 28. 11 = 308 ; b = 28. 14 = 392 Vậy hai số phải tìm là 308 và 392. Dạng 3: Liên hệ phép chia có dư với phép chia hết, bcnn, ưcln. * Nếu số tự nhiên a chia cho số tự nhiên b được số dư là k => a – k ⋮ b * Nếu a ⋮ b và a ⋮ c mà ƯCLN(a, b) = 1 => a chia hết cho tích b.c (a, b, c ∈ N) * Nếu a ⋮ b và a ⋮ c mà a là số nhỏ nhất => a = BCNN(a, b) (a, b, c ∈ N) * Nếu a ⋮ b và m ⋮ b mà b lớn nhất => b = Ư CLN(a, m) (a, b, m ∈ N) Bài tập 1: Một số tự nhiên chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem số đó chia cho 91 thì dư bao nhiêu? Hướng dẫn Gọi số đó là a Vì a chia cho 7 dư 5, chia cho 13 dư 4 a 9 7; a 913 mà ƯCLN(7,13) = 1 nên a 9 7.13 a+9=91k a = 91k - 9 = 91k - 91+ 82 = 91(k - 1) + 82 (k N) Vậy a chia cho 91 dư 82. Bài tập 2: Tìm số tự nhiên a biết rằng khi chia 355 cho a ta được số dư là 13 và khi chia 836 cho a có số dư là 8 Hướng dẫn Theo đề khi chia 355 cho a ta được số dư là 13 nên ta có 355 a.m 13 với m N * và a 13 hay a.m 342 18.19 (1) và khi chia 836 cho a ta được số dư là 8 => Ta có 836 a.n 8 a.n 828 18.46 với n N * (2). Từ (1) và (2) suy ra a 18 là số tự nhiên cần tìm.
- 8 Bài tập 3: Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7 . Hỏi số đó chia cho 2737 dư bao nhiêu? Hướng dẫn Gọi số đã cho là A. Theo bài ra ta có: A = 7.a + 3 = 17.b + 12 = 23.c + 7 Mặt khác: A + 39 = 7.a + 3 + 39 = 17.b + 12 + 39 = 23.c + 7 + 39 = 7.(a + 6) = 17.(b + 3) = 23.(c + 2) Như vậy A+39 đồng thời chia hết cho 7,17 và 23. Nhưng Ư CLN(7,17,23) = 1 => (A + 39) 7.17.23 nên (A+39) 2737 => A+39 = 2737.k => A = 2737.k - 39 = 2737.(k-1) + 2698 Do 2698 < 2737 nên 2698 là số dư của phép chia số A cho 2737 Bài tập 4: Tìm số tự nhiên lớn nhất có 3 chữ số, sao cho chia nó cho 8 thì dư 7 và chia nó cho 31 thì dư 28 . Hướng dẫn: Gọi số cần tìm là a ( a N,100 a 999 ) Vì a chia cho 8 thì dư 7 và chia cho 31 thì dư 28 nên: a 7 8 a 7 88 a 18 a 1 648 a 658 a 28 31 a 28 3131 a 3 31 a 3 62 31 a 65 31 Vì (8, 31) = 1 nên a + 65 (8.31) hay a + 65 248 a = 248k – 65 (k N*). Vì a là số có 3 chữ số lớn nhất nên k = 4, khi đó a = 248.4 – 65 = 927. Vậy số cần tìm là 927 Bài tập 5: Tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,7 đều dư 3. Hướng dẫn Gọi số cần tìm là a . điều kiện a N,a 100 Vì a chia cho 4, 6, 7 đều dư 3 a 3 4,6,7 Mà a nhỏ nhất => a – 3 nhỏ nhất => a- 3 = BCNN(4,6,7) Mà ƯCLN(4, 6, 7) = 1 => BCNN(4,6,7) = 4.7.6 = 168 a 3 168 a 171 Vậy số cần tìm là 171. Bài tập 6: Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11. Hướng dẫn Gọi số cần tìm là a ta có: (a - 6) 11 ; (a - 1) 4 ; (a - 11) 19. => (a - 6 + 33) 11 ; (a - 1 + 28) 4 ; (a - 11 +38 ) 19.
- 9 => (a +27) 11 ; (a +27) 4 ; (a +27) 19. Mà a nhỏ nhất => a + 27 nhỏ nhất => a + 27 = BCNN(11, 4, 9) Do ƯCLN (4 ; 11 ; 19) = 1 => BCNN(11, 4, 9) = 11.4.9 = 396 => a + 27 = 396 => a = 369 Bài tập 7: Tìm số tự nhiên a nhỏ nhất sao cho: a chia cho 5 thì dư 3, a chia cho 7 thì dư 4. Hướng dẫn Ta có: a = 5q + 3 ; a = 7p + 4 Xét a +17 = 5q + 20 = 7p + 21 => a 17 chia hết cho cả 5 và 7 => a 17 bội chung của 5 và 7. Vì a là số tự nhiên nhỏ nhất nên a +17 = BCNN(5,7) = 35 => a = 18 Bài tập 8: Tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4, cho 5, cho 6 đều dư là 2, còn chia cho 7 thì dư 3. Hướng dẫn Gọi số tự nhiên đó là a, ta có a – 2 = BC(3; 4; 5; 6). Mà BC( 3; 4; 5; 6) = 60; 120; 180; 240; … Nên a nhận các giá trị 62; 122; 182; 242 …. Mặt khác a là số nhỏ nhất chia cho 7 thì dư 3 tức là (a – 3) là số nhỏ nhất chia hết cho 7 => a = 122 (vì a = 62 thì 62 – 3 = 59 không chia hét cho 7) Bài tập 9: Học sinh khối 6 khi xếp hàng; nếu xếp hàng 10, hàng 12, hàng15 đều dư 3 học sinh. Nhưng khi xếp hàng 11 thì vùa đủ. Biết số học sinh khối 6 chưa đến 400 học sinh.Tính số học sinh khối 6? Hướng dẫn Gọi số Hs khối 6 là a (3
- 10 Bài tập 10: Một người bán năm giỏ xoài và cam. Mỗi giỏ chỉ đựng một loại quả với số lượng là: 65 kg; 71 kg; 58 kg; 72 kg; 93 kg. Sau khi bán một giỏ cam thì số lượng xoài còn lại gấp ba lần số lượng cam còn lại. Hãy cho biết giỏ nào đựng cam, giỏ nào đựng xoài? Hướng dẫn Tổng số xoài và cam lúc đầu: 65+ 71+ 58+ 72+ 93 = 359 (kg) Vì số xoài còn lại gấp ba lần số cam còn lại nên tổng số xoài và cam còn lại là số chia hết cho 4, mà 359 chia cho 4 dư 3 nên giỏ cam bán đi có khối lượng chia cho 4 dư 3. Trong các số 65; 71; 58; 72; 93 chỉ có 71 chia cho 4 dư 3 . Vậy giỏ cam bán đi là giỏ 71 kg. Số xoài và cam còn lại : 359 - 71= 288 (kg) Số cam còn lại : 288:4 = 72(kg) Vậy: các giỏ cam là giỏ đựng 71 kg ; 72 kg . các giỏ xoài là giỏ đựng 65 kg ; 58 kg; 93 kg. Bài tập 11: Hai lớp 6A; 6B cùng thu nhặt một số giấy vụn bằng nhau. Lớp 6A có 1 bạn thu được 26 kg còn lại mỗi bạn thu được 11kg. Lớp 6B có 1 bạn thu được 25 kg còn lại mỗi bạn thu được 10kg. Tính số học sinh mỗi lớp biết rằng số giấy mỗi lớp thu được trong khoảng 200kg đến 300kg. Hướng dẫn Gọi số giấy mỗi lớp thu được là x (kg) thì (x - 26) 11 và (x - 25) 10 Do đó (x - 15) BC (10; 11) và 200 < x < 300 => x - 15 = 220 => x = 235 Số HS lớp 6A là (235 - 26) : 11 + 1 = 20 HS Số HS lớp 6B là (235 - 25) : 10 + 1 = 22 HS Bài tập 12: Số học sinh khối 6 của một trờng cha đến 400 bạn, biết khi xếp hàng 10; 12; 15 đều dư 3 nhưng nếu xếp hàng 11 thì không dư. Tính số học sinh khối 6 của trường đó. Hướng dẫn Gọi số học sinh là a (a Z*) Ta có a - 3 BC(10; 12; 15) a - 3 = 60k (k N*) a = 60k + 3 k 1 2 3 4 5 6 7 a 63 123 183 243 303 363 423 Ta xem với giá trị nào của k thì a < 400 và a 11 Trong các giá trị trên, chỉ có a = 363 < 400 và a 11
- 11 Vậy số học sinh cần tìm là 363 học sinh. Bài tập 13: Một đơn vị bộ đội khi xếp hàng, mỗi hàng có 20 người, hoặc 25 người, hoặc 30 người đều thừa 15 người. Nếu xếp mỗi hàng 41 người thì vừa đủ (không có hàng nào thiếu, không có ai ở ngoài hàng). Hỏi đơn vị có bao nhiêu người, biết rằng số người của đơn vị chưa đến 1000? Hướng dẫn Gọi số người của đơn vị bộ đội là x (x N) x : 20 dư 15 x – 15 20 x : 25 dư 15 x – 15 25 x : 30 dư 15 x – 15 30 Suy ra x – 15 là BC(20, 25, 35) Ta có 20 = 22. 5; 25 = 5 2 ; 30 = 2. 3. 5 => BCNN(20, 25, 30) = 22. 5 2. 3 = 300 BC(20, 25, 35) = 300k (k N) x – 15 = 300k x = 300k + 15 mà x < 1000 nên 17 300k + 15 < 1000 300k < 985 k < 3 (k N) => k = 1; 2; 3 60 Chỉ có k = 2 thì x = 300k + 15 = 615 41 Vậy đơn vị bộ đội có 615 người B.BÀI TOÁN THƯỜNG GẶP TRONG ĐỀ THI HSG VÀ TOÁN CHUYÊN 6 Bài 1. Cho n là số tự nhiên, tìm số nguyên tố p có 2 chữ số sao cho p UCLN 2n 3;3n 15 Lời giải Cho n là số tự nhiên, tìm số nguyên tố p có 2 chữ số sao cho p =ƯCLN 2n 3;3n 15 2n 3 p 6n 9 p vì p ƯCLN 2n 3;3n 15 3n 15 p 6n 30 p 6n 30 6n 9 p 39 p Do p là số nguyên tố có 2 chữ số Vậy p 13 Bài 2. Tìm 2 số tự nhiên a, b thoả mãn: a 2b 48 và a, b 3 a, b 114 Lời giải a 2b 48 và a, b 3 a, b 114 114 3;3 a, b 3 a, b 3 và a 2b 48 a 2 a 6
- 12 a 0; 6;12;18; 24;30;36; 42 a 6 12 18 24 30 36 42 b 21 8 15 12 9 6 3 a, b 3 16 3 12 3 6 3 a, b 42 36 90 24 90 36 42 3 a, b 126 108 270 72 270 108 126 a, b 3a, b 129 114 360 84 360 114 168 Bài 3. a)Tìm UCLN(7n 3,8n 1) n * . Tìm điều kiện của n để hai số đó nguyên tố cùng nhau. b)Tìm hai số tự nhiên biết: Hiệu của chúng bằng 84, UCLN của chúng bằng 28 và các số đó khoảng từ 300 đến 400 Lời giải Gọi UCLN(7n 3,8n 1) d với n * Ta có: 7n 3 d,8n 1 d 8. 7n 3 7. 8n 1 d 31 d d 1;31 Để hai số đó nguyên tố cùng nhau thì d 31 Mà 7n 3 31 7n 3 3131 7 n 4 31 n 4 31 (vì 7 và 31 nguyên tố cùng nhau) n 31k 4 k Do đó d 31 n 31k 4 Vậy hai số 7n 3,8n 1 nguyên tố cùng nhau khi n 31k 4 k Gọi hai số phải tìm là a, b a, b *, a b a 28k Ta có: UCLN(a, b) 28 k, q *, k, q 1 b 28q Ta có: a b 84 k q 3 Theo bài ra : 300 b a 440 10 q k 16 Chỉ có 2 số 11, 14 nguyên tố cùng nhau và có hiệu là 3 q 11, k 14 a 28.11 308 . Vậy hai số phải tìm là 308,392. b 28.14 392
- 13 Bài 4. Tìm hai số tự nhiên a, b biết: BCNN(a, b) 420; UCLN(a, b) 21 và a 21 b Lời giải a 21m Vì UCLN(a, b) 21 , m, n 1 b 21n Vì BCNN(a, b) 420 BCNN(21m, 21n) 420 21.20 BCNN(m, n) 20 Vì a 21 b 21m 21 21n m 1 n (*) m 4, n 5 Trong các trường hợp cần xét chỉ có là thỏa (*) m 2, n 3 m 4, n 5 a 21.4 84 Vậy với m 2, n 3 b 21.5 105 Bài 5. a)Tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4, cho 5, cho 6 đều dư là 2, còn chia cho 7 thì dư 3. b)Khi chia một số tự nhiên a cho 4 ta được số dư là 3 còn khi chia a 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36 Lời giải a)Gọi a là số tự nhiên cần tìm Vì a chia cho 3,4,5,6 đều dư 2 nên a 2 chia hết ch0 3,4 ,5,6 a 2 BC 3; 4;5; 6 , BCNN(3, 4,5, 6) 60 a 2 0; 60;120;180..... a 2; 62;122;182;..... Mà a là số nhỏ nhất và chia cho 7 dư 3 a 122 b)Theo đề bài ta có: a 4p 3 9q 3(p, q ) a 13 4p 3 13 4 p 4 (1) a 13 9q 5 13 9 q 2 2 Từ (1) và (2) ta nhận thấy a 13 là bội của 4 và 9 mà 4,9 1 a 13 là bội của 4.9 36 Ta có a 13 36k k a 36k 13 36 k 1 23 Vậy a chia cho 36 dư 23. Bài 6. Khi chia một số tự nhiên a cho 4 ta được số dư là 3. Còn khi chia a cho 9 ta được số dư là 5. Hãy tìm số dư trong phép chia a cho 36 Lời giải Đặt a 4q 3 9p 5 (p, q là thương trong hai phép chia)
- 14 a 13 4 q 4 9 p 2 a 13 là bội của 4 và 9 , mà 4,9 1 a 13 BC 36 a 13 36k k * a 36k 13 36 k 1 23 Vậy a chia 36 dư 23 Bài 7. a) Tìm số tự nhiên nhỏ nhất khi chia cho 3 dư 2, chia cho 4 dư 3, chia cho 5 dư 4 và chia cho 6 dư 5 b) Một số chia cho 3 dư 2, chia cho 4 dư 3, chia cho 167 dư 130. Hỏi số đó khi chia cho 2004 thì số dư là bao nhiêu ? Lời giải a) Gọi số tự nhiên đó là a ta có: a 13 a 1 4 a 1 chia hết cho 3,4,5,6 a 15 a 1 6 Mà a nhỏ nhất a 1 BCNN 3, 4,5, 6 60 a 59 b) Gọi số đó là A ta có: A 3k 2 A 37 3k 2 37 3 k 13 3 A 4q 3 A 37 4q 40 4(q 10) 4 A 167r 130 A 37 167r 167 167(r 1)167 A 37 3.4.167 A 37 2004 A 37 2004n A 2004n 37 2004(n 1) 1967 Vậy A chia cho 2004 có số dư là 1967. Bài 8. Tìm hai số tự nhiên a và b, biết a b; a b 16 và ƯCLN a, b 4 Lời giải UCLN a, b 4 a 4k, b 4m, k, m * a b 4 k m 16 k m 4 Và a b nên k m và k; m *, do đó k 3, m 1. Vậy a 12, b 4 Bài 9. Cho ababab là số có sáu chữ số, chứng tỏ số ababab là bội của 3
- 15 Lời giải ababab ab.10000 ab.100 ab 10101.ab Do 10101chia hết cho 3 nên ababab chia hết cho 3 hay ababab là bội của 3 Bài 10. Tìm số tự nhiên lớn nhất có 3 chữ số, sao cho chia nó cho 8 thì dư 7 và chia nó cho 31 thì dư 28 Lời giải Gọi số cần tìm là a a ,100 a 999 Vì a chia cho 8 dư 7 và chia cho 31 dư 28 nên ta có: a 7 8 a 7 88 a 18 a 1 648 a 658 a 28 31 a 28 318 a 38 a 3 6231 a 65 31 Vì 8,31 1 nên a 65 8.31 hay a 65 248 a 248k 65 k * Vì a là số có 3 chữ số lớn nhất nên k 4 a 927 Bài 11. Tìm số tự nhiên có 3 chữ số, biết rằng khi chia số đó cho các số 25; 28;35 thì được các số dư lần lượt là 5;8;15 Lời giải Gọi số tự nhiên phải tìm là x Từ giả thiết suy ra x 20 25, x 20 28, x 20 35 x 20 BC 25, 28, 35 BCNN(25; 28;35) 700 x 20 k.700 k Vì x là số tự nhiên có ba chữ số x 999 x 20 1019 k 1 x 20 700 x 680 Bài 12. Tìm hai số tự nhiên a và b biết: BCNN(a, b) 420; UCLN(a, b) 21 và a 21 b Lời giải Từ dữ liệu đề bài cho, ta có: Vì UCLN(a, b) 21 nên tồn tại các số tự nhiên m và n khác 0, sao cho: a 21m; b 21n (1) và UCLN(m, n) 1 (2) Vì BCNN(a, b) 420 nên theo trên ta suy ra: BCNN(21m; 21n) 420 21.20 BCNN(m, n) 20 (3) Vì a 21 b nên theo trên ta suy ra: 21m 21 21n 21 m 1 n m 1 n (4)
- 16 Trong các trường hợp thỏa mãn các điều kiện (2) và (3), thì chỉ có trường hợp: m 4, n 5 hoặc m 2, n 3 là thỏa mãn điều kiện (4). Vậy với m 4, n 5 hoặc m 2, n 3 ta được các số phải tìm là: a 21.4 84; b 21.5 105 Bài 13. Với n số tự nhiên thỏa mãn 6n 1 và 7n 1 là hai số tự nhiên không nguyên tố cùng nhau thì ước chung lớn nhất của 6n 1 và 7n 1 là bao nhiêu ? Lời giải Gọi d là UCLN của 6n 1 và 7n 1 d * ta có: 6n 1 d 7. 6n 1 d 7 6n 1 6 7n 1 d 42n 7 42n 6 d 7n 1 d 6. 7n 1 d d 1;13 . Mà 6n 1, 7n 1 là hai số tự nhiên không nguyên tố cùng nhau Nên d 1 d 13 Vậy ước chung lớn nhất của 6n 1, 7n 3 là 13. Bài 14. Tìm hai số tự nhiên a và b, biết: BCNN a, b 300; UCLN a, b 15 và a 15 b Lời giải Từ dữ liệu đề bài cho, ta có : Vì UCLN (a,b)=15 nên ắt tồn tại các số tự nhiên m và n khác 0, sao cho: a 15m;b 15n (1) và UCLN m, n 1 (2) Vì BCNN a, b 300, nên theo trên, ta suy ra BCNN 15m,15n 300 15.20 BCNN m, n 20 (3) Vì a 15 b, nên theo trên ta suy ra: 15m 15 15n 15. m 1 15n m 1 n (4) Trong các trường hợp thỏa mãn các điều kiện 2 và 3 , thì chỉ có trường hợp m 4; n 5 là thỏa mãn điều kiện 4 Vậy với m 4, n 5 ta được các số phải tìm là: a 15.4 60; b 15.5 75 .
- 17 Bài 15. Cho S 1 3 32 33 ..... 398 399 a) Chứng minh rằng S là bội của 20 b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1 Lời giải a) Tổng S có 100 số hạng chia thành 25 nhóm, mỗi nhóm 4 số hạng S 1 3 32 33 ...... 398 399 1 3 32 33 34 35 36 37 ..... 396 397 398 399 20 34. 20 ...... 396. 20 S 20 b)S 1 3 32 33 ...... 398 399 3S 3 32 33 34 ..... 399 3100 1 3100 3S S 4S 4 3100 1 4 3100 chia cho 4 dư 1. Bài 16. a) Tìm hai số tự nhiên biết tổng của chúng bằng 504 và UCLN của chúng bằng 42 b) Tìm a để a 1 là bội của a 1 Lời giải a) Gọi a, b là hai số cần tìm, a, b *, a b, a 42a ', b 42b ' a ', b ' 1 4 Vì a b a ' b ' a b 504 a ' b ' 12 có các cặp thỏa mãn là 11;1 ; 7;5 a, b 462; 42 ; 294; 210 a 1 2 b) Để a 1 là bội của a 1 nên 1 là số nguyên khi a 1 a 1 a 1 U(2) 1;1; 2 a 0; 2;3 Bài 17. Chứng minh rằng với mọi số tự nhiên n thì UCLN 21n 4;14n 3 1. Lời giải Gọi d là UCLN 21n 4;14n 3 21n 4 d và 14n 3 d 2. 21n 4 d và 14n 3 d 2. 21n 4 d và 3. 14n 3 d
- 18 3. 14n 3 2. 21n 4 d 1 d d 1 Vậy UCLN 21n 4;14n 3 1 . Bài 18. Tìm số tự nhiên n có 4 chữ số biết rằng n là số chính phương và n là bội của 147 Lời giải Vì n là số tự nhiên có 4 chữ số nên 1000 n 9999 Theo bài ra n là bội của 147 nên n 147k 7 2.3k Do n là số chính phương nên khi phân tích ra thừa số nguyên tố thì lũy thừa các thừa số nguyên tố phải có số mũ chẵn k 3 k 3m n 7 2.32.m 441m 1000 441m 9999 2 m 22 Để n là số chính phương thì m là số chính phương m 4;9;16 Suy ra các số tự nhiên cần tìm là : 1764;3969; 7056. Bài 19. a) Tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4, cho 5, cho 6 đều dư 2, còn chia cho 7 thì dư 3 b) Tìm hai số tự nhiên biết tổng UCLN và BCNN là 23. Lời giải a) Gọi số tự nhiên đó là a Ta có: a BC(3; 4;5;6) 2 a 62;122;182; 242..... Mặt khác a là số tự nhiên nhỏ nhất chia 7 dư 3 nên a 122 b) Gọi hai số tự nhiên đó là a, b a, b . Gọi d UCLN(a, b) Ta có: a a '.d; b b '.d a ', b ' 1 ab a '.b '.d 2 Khi đó BCNN(a; b) a '.b '.d UCLN(a; b) d Theo bài ra ta có: UCLN(a; b) BCNN(a; b) 23 nên d a.b '.d ' 23 d 1 a '.b ' 23 a ' 1; b ' 22 d 1;1 a 'b ' 23 a 'b ' 22 mà a ', b ' 1 a ' 11; b ' 2 c) Vì 32x1y chia hết cho 45 5.9 y 0 32x10 9 3 2 x 1 0 9 x 3 y 5 32x15 9 3 2 x 1 5 9 x 7
- 19 Vậy hai số cần tìm là 32310;32715 Bài 20. Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11 Lời giải Gọi số cần tìm là a ta có: a 6 11; a 1 4, a 1119 a 6 3311; a 1 28 4; a 11 38 19 a 27 11, 4,19 Do a là số tự nhiên nhỏ nhất nên a+27 nhỏ nhất Suy ra a 27 BCNN(4;11;19) a 809 Bài 21. Tìm số tự nhiên a nhỏ nhất sao cho: a chia cho 5 dư 3, a chia cho 7 dư 4. Lời giải Ta có: a 5q 3;a 7p 4 Xét a 17 5q 20 7p 21 a 17 chia hết cho cả 5 và 7 a 17 BC 5; 7 Vì a là số tự nhiên nhỏ nhất nên a 17 BCNN 5, 7 35 a 18 Bài 22. Tìm các số a,b thỏa mãn: 2a 3b 100 và 15.BCNN (a, b ) 8.UCLN (a, b ) 1990 Lời giải Gọi a, b d a dm, b dn, m, n 1 2a 3b 2 dm 3dn d 2 m 3n 100 d U (100) a, b dm, dn dmn 15 a, b 8 a, b 15dmn 8d d (15mn 8) 1990 d U (1990) d UC (100,1990) U (10) 1; 2;5;10 Lập bảng giá trị d 1 2 5 10 2m 3n 100 50 20 10 15mn 8 1990 995 398 199 mn Ktm ktm 26 ktm Vì m, n mn mn 26; 2m 3n 20, d 5
- 20 m 26 n 1 Mà m, n 1, m n(do a b ) m 13 n 2 Trong các cặp số trên chỉ có cặp m 13, n 2 thỏa mãn 2m 3n 20 Vậy a dm 5.13 65, b dn 5.2 10 Bài 23. Tìm hai số tự nhiên a, b biết: BCNN (a, b) 300;UCLN (a, b) 15 Lời giải Không mất tính tổng quát, giả sử a b 0 Ta có: ab BCNN (a, b).UCLN (a.b) 300.15 4500 Vì UCLN (a, b) 15 nên a 15m, b 15n, m n và m, n 1 Do đó 15m.15n 4500 mn 20 Do m, n nguyên tố cùng nhau nên ta chỉ nhận m 5; n 4 và m 20; n 1 m 20 5 a 300 75 n 1 4 b 15 60 Vậy a, b 300;15 ; 15;300 ; 75;60 ; 60; 75 Bài 24. Tìm hai số tự nhiên a và b, biết: BCNN a, b 300; UCLN a, b 15 và a 15 b Lời giải Từ dữ liệu đề bài cho, ta có : Vì UCLN (a,b)=15 nên ắt tồn tại các số tự nhiên m và n khác 0, sao cho: a 15m; b 15n (1) và UCLN m, n 1 (2) Vì BCNN a, b 300, nên theo trên, ta suy ra BCNN 15m,15n 300 15.20 BCNN m, n 20 (3) Vì a 15 b, nên theo trên ta suy ra: 15m 15 15n 15. m 1 15n m 1 n (4) Trong các trường hợp thỏa mãn các điều kiện 2 và 3 , thì chỉ có trường hợp m 4; n 5 là thỏa mãn điều kiện 4 Vậy với m 4, n 5 ta được các số phải tìm là: a 15.4 60; b 15.5 75
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn