Đề tài " Entropy and the localization of eigenfunctions "
52
lượt xem 7
download
lượt xem 7
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
We study the large eigenvalue limit for the eigenfunctions of the Laplacian, on a compact manifold of negative curvature – in fact, we only assume that the geodesic flow has the Anosov property. In the semi-classical limit, we prove that the Wigner measures associated to eigenfunctions have positive metric entropy. In particular, they cannot concentrate entirely on closed geodesics. 1. Introduction, statement of results We consider a compact Riemannian manifold M of dimension d ≥ 2, and assume that the geodesic flow (g t )t∈R , acting on the unit tangent bundle of M , has a “chaotic”...
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
CÓ THỂ BẠN MUỐN DOWNLOAD