
Như vậy với kỹ thuật remote LO mà ở BS ta không cần bộ dao động LO, đồng thời thành phần phát cũng chỉ cần sử dụng
1 LD FB hay thậm chí là 1 LED cũng bảo đảm yêu cầu. Cấu hình đã cho ta một cấu trúc BS khá đơn giản, chỉ bao gồm các
thành phần chuyển đổi điện/quang, ngược lại và lọc thông chứ không có chức năng xử lý nào được thực hiện tại BS
1.12 3.5 Mô phỏng tuyến downlink
1.13 3.5.1Giới thiệu
Trong phần này, ta sẽ mô phỏng hoạt động tuyến RoF như đã được mô tả ở hình 3.1 sử dụng chương trình Simulink của
Matlab.
Để đơn giản ta chỉ mô phỏng hoạt động của tuyến downlink để so sánh với các công thức đã được nêu ra ở phần 3.3. Các
tác động của nhiễu sẽ không được xét trong quá trình mô phỏng.
Chương trình mô phỏng sẽ vẽ ra dạng đồ thị về dạng của tín hiệu và phân tích phổ của nó.
1.13.1 3.5.2 Mô hình hóa và các thông số
Dựa vào công thức (3.3.5) và (3.3.6)

(3.3.6)→
tJ
I
P
tJ
I
P
tE
LOoptLO
M
opt
optLO
M
opt
upp
cos
4
cos
2
)(
1
0
(3.3.7)→
ttJ
I
P
tJ
I
P
tE
sigsuboptsub
M
opt
optsub
M
opt
low
cos
4
cos
2
)(
1
0
Là các kết quả của ngõ ra bộ điều chế ngoài dual-MZM. Ta có thể mô phỏng 2 bộ điều chế như 2 khối upper và lower
trong hình 3.5. Một khối cộng tín hiệu được đặt ở phía sau để kết hợp 2 ngõ ra bộ điều chế này, để phân tích tuyến ta có thể sử
dụng các kết quả của heterodyne. Về phía BS, tuyến downlink chỉ đơn giản là một photodiode được biểu diễn bởi công thức
(3.3.9) nên được mô phỏng bởi một khối lấy module như hình 3.5. Hai khối Scope và PSD dùng để phân tích hình dạng tín
hiệu thu được. Mô hình này đã đơn giản hóa các thành phần nhiễu, bộ khuếch đại EDFA, suy hao sợi quang, và một số thành
phần khác vì ta chỉ cần quan sát dạng của tín hiệu và phân tích phổ của thành phần ra.

Hình 3.5 Sơ đồ mô phỏng tuyến downlink
Với mô hình như trên, ta lần lượt chọn các thông số trong công thức (3.3.5) và (3.3.6) như sau:
c=3×108 (m/s) là vận tốc ánh sáng trong chân không.
λ=1550nm nên ωopt = 2×π×c/λ=1.21×1015 (rad/s)

βLO=βsub=0.4
Popt = 1mW = 10-3W công suất quang ngõ ra.
fLO=60GHz
fsub=2.5GHz
Data: bit 1 với φsignal=0 & bit 0 với φsignal=π.
Các thông số này được chạy trong file parameterRoF.m để cung cấp cho phần mô phỏng của simulink, đồng thời ta có thể
thay đổi được thông số một cách dễ dàng.
Ngoài ra còn có các thông số của chương trình mô phỏng, các thông số này có thể thay đổi tùy biến để được các giá trị
quan sát.
1.13.2 3.5.3 Các kết quả mô phỏng và phân tích
Kết quả thứ 1: Phổ tín hiệu tại BS
Bộ điều chế ngoài của chúng ta bao gồm 2 bộ dual-MZM điều chế 2 dạng sóng quang riêng biệt ở tần số RF. Bây giờ nếu
ta chỉ sử dụng mỗi bộ điều chế dual-MZM một cách riêng biệt để truyền tới BS thì sẽ nhận được các kết quả như hình 3.6 cho
bộ điều chế trên và 3.7 cho bộ điều chế dưới.

Ở hình 3.6 cho ta thấy nếu chỉ truyền nhánh trên thì ở BS ta chỉ thu được sóng RF có tần số 60GHz tương ứng với tần số
góc là 3.7×1011(rad/s) tương ứng với sóng LO.
Ở hình 3.7 cho ta thấy nếu chỉ truyền nhánh dưới thì ở BS ta chỉ thu được sóng RF có tần số 2.5GHz. Đây chính là dữ liệu
của chúng ta được điều chế ở tần số 2.5GHz, nhưng đó không phải là cái mà ta cần để bức xạ tại Anten BS vì tín hiệu bức xạ
cần phải điều tần lên ở 60GHz.
Hình 3.6 Sản phẩm tại BS của bộ điều chế nhánh trên.

